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Instructions and Information: 
 

l Attempt any 2 of the 6 questions  
l This is a closed book examination 
l Start each question on a new sheet of paper – use only one side of each sheet 
l Write your identification number on the upper right hand corner of each answer sheet 
l You may use a non programmable calculator 
l Partial credit will be awarded. 
l Correct answers without adequate explanations will not receive full credit.  
l Make sure your work is legible and clear 
l The points assigned to each part of each question is clearly indicated 



 
Nuclear & Particle Physics 

	
  
	
  
(a) On a graph of atomic number (Z) versus the number of neutrons (N) indicate where you would 

expect stable nuclei to be found.       (15) 
 
 
(b) On your graph indicate (and label) the direction of a line from a parent to daughter nuclei for α 

decay.          (10) 
 
 
(c) On your graph indicate (and label) the direction of a line from parent to daughter nuclei for β+ 

decay.          (10) 
  
 
(d) Explain why a “neutron excess” is observed for heavy nuclei.    (30) 
 
 
A neutron star may be thought of as a VERY large nucleus. 
 
(e) Estimate the mass, in kilograms, of a fragment of neutron star material of diameter 0.5 cm. 
           (25) 
 
 
(f) Evaluate the density of this material in kg/m3.     (10) 
 
 
 
	
  
	
  
	
  
	
  
	
   	
  



Atmospheric Physics 
 
 

In the homosphere (<50 km), the dry atmosphere is assumed to have roughly constant composition due to 
turbulent mixing. The composition is reported in the U.S. Standard Atmosphere as fractional composition 
by volume. The three largest contributors (neglecting water vapor) are:  
 

Constituent Molar Mass (g/mol) Fraction by Volume 
N2 28.02 78.08 % 
O2 16 20.95 % 
Ar 39.95 0.93 % 

 
 
(a) Assuming an ideal gas, show that fraction by volume is equivalent to molar fraction. (10) 
  
(b) Calculate the mean molar mass of dry air,  
 

€ 

Md = niMi / nii∑i∑
 

 
 where ni is the number of moles of each constituent and Mi is the molar mass of each constituent. 
              (15) 
 
(c) Derive the intensive form of the Ideal Gas Law for dry air (i.e. a function of pressure (P ), total 
 volume per unit mass (α), and temperature (T )) and calculate the dry air gas constant (Rd ) given a 
 Universal Gas Constant of 8.314 J/K·mol.        (15) 
 
 
 
The troposphere extends from the surface up to a height of approximately 11 km. The U.S. Standard 
Atmosphere models the troposphere as dry air with a surface temperature of 288.15 K, a surface pressure of 
101.3 kPa, and a constant vertical temperature gradient of −6.5 K/km.  
 
(d) Beginning with hydrostatic equilibrium 
 

€ 

∂P
∂z

= −g α
  

 
 where g is constant, find the pressure as a function of height within the troposphere. (20)  
 
(e) Calculate the mass per unit area in a hydrostatic column extending from the surface to the top of the 
 troposphere.            (20) 
  
(f) Calculate the mass per unit surface area of a hydrostatic column extending from the surface to the 
 top of the atmosphere. What fraction of the total mass of the atmosphere is contained in the 
 troposphere?            (20)  

 
  



Optics 
 

One common method to analyze an optical system is the Jones’ matrix method. In this approach, a ray is 
represented by a 2-element column   𝜌𝜃 , with 𝜌 the ray height above and 𝜃 the ray angle to the optical axis. 
Optical elements along the axis are represented by 2×2 matrices, multiplied in succession in which the 

light passes the elements. For instance, a thin lens of focal distance 𝑓 is represented by  
0 1
− !
!

1  and an 

empty segment of length 𝑑 along the optical axis by   1 𝑑
0 1 .  

 
(a) Using this method, find the focal length of a compound lens, made of two lenses in contact with 

focal lengths 𝑓! and  𝑓!.        (20) 

 
(b) Using this method, find the effective focal length of a compound lens, made of two lenses with 

focal lengths 𝑓! and  𝑓!, separated by a distance  𝑑 .     (30) 

Hint: Start with a ray parallel to the axis at a distance 𝜌 and propagate it through an appropriate 
sequence of empty spaces and two lenses. The angle of the exit ray is 𝜌 divided by the effective 
focal length. 
 

(c) In an example of the solution you obtained, consider a block of glass cut as in the figure below. 
When 𝑑 → 0 the combination is still a plate with an effective focal length  𝑓 = 0 and a parallel 
beam incident from the left will remain parallel. The two parts are now separated by a variable 
distance d. For what distances 𝑑 will we have convergent and divergent exit beams after the 2nd 
lens? Assume that the two blocks may be approximated by thin lenses.   (20) 

Hint: the lens maker’s equation is  !
!
= 𝑛 − 1 !

!!
− !

!!
, where   𝑅!,! are the radii of curvature for 

the two lens surfaces. 
 
 

(d) Sketch the ray diagram for a parallel incident beam and  𝑑 = 𝑓!/2, where 𝑓! is the focal length of 
the first lens.         (15) 

 

(e) Sketch the ray diagram for a parallel incident beam and  𝑑 = 2𝑓!.   (15) 

d

 



Atomic & Molecular Physics 
 
 
Frequency Comb 
 
A laser frequency comb is a unique source of coherent light consisting of evenly spaced frequencies such 
that fn = f0 + n fr where fr is the frequency spacing and f0 is an offset. 
 
(a) Suppose that two beams of light of different frequencies  fa and fb  combine in a medium that 

absorbs some of the light and produces a signal of some sort which can be detected and measured 
in the laboratory.  If the material responds linearly  to the incident light, what frequencies will we 
observe in the signal?        (20) 

 
(b) What frequencies will we observe if the material responds non-linearly, and particularly if the two 

frequencies differ by only a relatively small amount?     (20) 
 
(c) The time and frequency domains of laser light are closely connected.  Suppose that a laser is a 

pulse of red light (wavelength ~600 nm) lasting for 10 nanoseconds (10-8 seconds) with an 
exponential decay of amplitude.  What would the spectrum (in frequency and wavelength) of this 
light be?   What happens to the spectrum if instead of 10 nanoseconds the pulse is only 10 
femtoseconds (10-14 seconds)?       (20)  

 
 
(d) A “mode-locked” laser is one where the gain only applies for pulses of light, and femtosecond 

duration pulses may be obtained this way.  In a “mode-locked” cavity, the pulses have a consistent 
phase to one another, and thus may interfere with one another  when propagating through a non-
linear medium. Assume that the pulses repeat with a frequency fr.  Show that a train of thousands 
of such pulses would produce a comb of frequencies fn.    (20) 

 
(e) The second, our standard unit of time, is defined by the properties of an atom: 
 

“The second is the duration of 9,192,631,770 periods of the radiation corresponding to the 
transition of two hyperfine levels of the ground state of the cesium 133 atom.” 

 
That is, this oscillator is about 9.2 GHz and can be measured with modern electronics.  By 
contrast, the frequency of visible light is too high to measure electronically.  To connect these two 
regimes, a laser frequency comb spanning many octaves (factors of 2) would be needed.  Consider 
just one of these factors of 2. 
Without an external reference (i.e. the light is “self-referencing”), how could we find f0 and  tell 
that the comb’s fr is such that on of its frequencies falls exactly on twice the reference frequency?  
(Hint: Consider your answer to part b.) This is the basis for an optical atomic clock. (20) 



Astrophysics 
 

 
Solar Sailing 
 
Consider a spacecraft with an extended surface that we can think of as a “sail” exposed to light from the 
Sun.  The solar constant, the irradiance of the Earth with light from the Sun, has been measured by Earth 
satellites to be about 1.36 kilowatts per square meter above the atmosphere at Earth’s distance from the Sun 
(1 astronomical unit or 1.5x108 km). Sunlight exerts a pressure on the sail due to the momentum carried by 
photons, and the pressure results in a force and acceleration. The force due to the wind of particles from the 
Sun is several orders of magnitude smaller and should be neglected in this problem. 
 
Speed of light c = 299,792,458 m/s  
 
 
(a) If the “sail” were perfectly absorbing, what is  the magnitude and direction of the force exerted on 

the spacecraft by the pressure of sunlight on its sail, assuming a perfectly absorbing black  area of 
100x100 meters extended perpendicular to a line to the Sun.     (25) 

 
 
(b) What would this be if the surface were perfectly reflecting?    (25) 
 
 
(c) Since the spacecraft would be in orbit about the Sun, consider only the effect of light pressure on 

the radial motion assuming that the sail will turn as needed to always face the Sun.  How would 
the radial acceleration depend on R, the distance of the spacecraft from the Sun? Compare the 
force of gravity on the spacecraft pulling toward the Sun to the force of light pressure pushing it 
away for a perfectly reflecting sail 100x100 meters and mass 100 kg.   (25) 

 
 
(d) If the spacecraft with mass 100 kg started out at 0.1 astronomical unit in a circular orbit, the radial 

pressure would change the radial velocity vr and the spacecraft would accelerate away from the 
Sun.  Considering only its radial motion, what would its speed be when it reached into the Oort 
Cloud, say 10,000 astronomical units from the Sun?  Will the spacecraft escape the solar system? 

           (25) 
 
 
 
  



Condensed Matter Physics 
 

 
This problem concerns the tight-binding energies of a crystal with the hexagonal Bravais lattice symmetry. 

The α-orbital tight-binding energy Eα

k( )  is given by Eα (


k ) = εα − Jα

0 − Jα
1

n
∑ (


Rn )e

−i

k ⋅

Rn , where α 

represents the atomic orbital,  αε  is the atomic orbital energy (e.g., sε , the  s-orbital energy, pε , the  p-

orbital energy, etc.), 0Jα , the on-site potential energy, Jα
1 (

Rs ) , the off-site potential energy, 


k , the 

reciprocal vector, and 

Rn , the nearest neighbor lattice vectors. For a given orbital α, αε and 0Jα are 

constants, and the tight-binding energies Eα

k( ) will depend on the symmetry of the crystal via the third 

term in the equation.  
 
(To answer this problem it is not critical that you understand exactly what is meant by the tight-binding 
energy of a crystal.  What you need to do in this problem is to know how to use it to study the crystal with 
the hexagonal lattice symmetry. The basic knowledge that you need is the hexagonal symmetry, the 
primitive lattice (or basis) vectors, the nearest neighbor lattice vectors, and the reciprocal lattice vectors.) 
 
 

(a) Fig. 1 shows the simple cubic (sc) Bravais lattice. The solid circles represent points (or atoms) 
forming the lattice. Write down their primitive lattice vectors (

a1 , 
a2 , and 

a3 ) (i.e., the bold arrows 

shown in Fig. 1) in terms of the lattice constant and the unit vectors ( , , and ) in Cartesian 
coordinates. Namely, you need to find the x-, y-, and z-components for each vector, and express it as 
ai = aixî + aiy ĵ + aizk̂) , i=1, 2, 3.       (20) 

 
(b) Find the coordinates of the 6 nearest neighbor lattice vectors 


Rn = (Rnx ,Rny ,Rnz ) , n = 1, 2,…,6, for 

the sc lattice with respect to the origin. Namely, you need to find the components of the vectors 
which start from the origin and end on the nearest neighbor points in the sc lattice. Keep in mind that 
some of nearest neighbor lattice vectors might end on the points in the nearest neighbor cubes of the 
single cube which are not shown in Fig.1.      (20) 

 
 

(c) Use the formula given at the first paragraph of the problem and the results from (b) to express the s-

orbital tight binding energy Eα

k( )  in the sc as a function of 


k , and   

 
(Hint: Js

1(

Rn ) = Js

1 is independent of  

Rn  when the orbital has a spherical symmetry, like s-orbital, 

and αε and 0Jα  are constants)       (20) 
 
 

(d) Using the results from (c) find the s-orbital tight binding energy Eα

k( )  for the sc in terms of , 

 , and at Γ point (i.e., 

k = (0,0,0) ) and R point (i.e., 


k = π

a
(1
2
, 1
2
, 1
2
)  , respectively.   

(20) 
 

a î ĵ k̂

αε
0Jα

αε

0Jα
1
sJ



(e) Calculate the effective mass with respect to Es

k( )  for the fcc which is defined as  

. What is the effective mass at Γ point (i.e., ) 


k = (0,0,0) ?         (20) 
 
 
 
                     
 

                     
                      

Fig. 1 The simple cubic (sc) Bravais lattice. The balls represent the points (or atoms) forming the lattice. 
The bold arrows are the primitive lattice vectors 

a1 , 
a2 , and 

a3 . The thin black arrows denote the unit 
vectors of the Cartesian coordinates. The origin is located at the corner of the single cube. 
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