PHYS 222 - Spring 2012 - Quiz # 8

Closed books, notes, etc. No electronic device except a calculator.

NAME:	SBM	
-------	-----	--

(questions with equal weight, i.e. 20 points each)

- 1. Which of the following describes what will happen to a light ray incident on an air-to-glass boundary (with light incident from the air side)?
- a. total reflection
- b. total transmission
- (c.) partial reflection, partial transmission
- d. partial reflection, total transmission
- 2. A monochromatic beam of light in air has a wavelength of 589 nm in air. It passes through glass (n = 1.52) and then through carbon disulfide (n = 1.63). What is its wavelength in the carbon disulfide?

(a)
$$361 \, \text{nm}$$
 $\lambda_0 = 589 \, \text{nm}$ in air $(n = 1.00)$

- b. 387.5 nm
- c. 895 nm $\lambda_2 = ?$, $N_2 = 1.63$ (carbon disulf)
- d. 960 nm

$$\mathcal{N}_0 \lambda_0 = \mathcal{N}_2 \lambda_2 \Rightarrow \lambda_2 = \underbrace{\mathcal{N}_0 \lambda_0}_{\mathcal{N}_2}$$

$$\Rightarrow \lambda_2 = \frac{1.00 \times 589 \, \text{nm}}{1.63} \approx 361.3 \, \text{nm}$$

- 3. A fiber optic cable (n = 1.50) is submerged in water (n = 1.33). What is the critical angle for light to stay inside the cable?
- a. 83.1°

$$\frac{\gamma_{1}=1.33}{\gamma_{2}} \qquad \gamma_{1} \leq 1.50$$

′b.) 62.5°

when
$$\theta_1 = 90^\circ \Rightarrow \theta_2 = \theta_c$$

- c. 41.8°
- $\Rightarrow \sin \theta_c = \frac{n_1 \sin(90^\circ)}{n_2} = \frac{n_1}{n_2} = \frac{1.33}{1.50}$ $\theta_c = \sin^{-1}(\frac{1.33}{1.50}) = 62.5^\circ$ d. 27.6°
- 4. When white light disperses as it passes through a prism, which of the following colors moves at the lowest speed in the prism? Consider that the refractive index decreases for longer wavelengths.
- blue

higher "n' -> lower "v' because

yellow

b. green

V = C

d. red

- higher n at shorten
- 5. Three materials with $n_1 < n_2 < n_3$ are arranged in layers of uniform thickness. A light ray in air enters the first layer at an angle of incidence of 30° and the ray eventually exits the third layer at the refracted angle θ in air. What is the value of θ ?
- Some angle less than 30°.

- Some angle more than 30°.
- d. Insufficient information to answer.

$$\lim_{n \to \infty} \frac{2/2}{n} = \lim_{n \to \infty} \frac{2}{2} \Rightarrow \lim_{n \to \infty} \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$$