The Nuclear Atom

\[\text{atom} \approx 1 \times 10^{10} \text{ m} = 1 \text{ Å} = 0.1 \text{ nm} \]

\[m_e < m_{\text{atom}} \]

\[Q_{\text{atom}} = \text{neutral} \]

+ J. Thompson's atomic model:

Electrons distributed over a fluid-like volume containing most of the mass and the positive charges.

+ Rutherford's experiment and atomic model (1911):

- α-particles: doubly ionized He-atom
- Some α-particles undergo large scattering angles
- Large scattering angles are not expected with Thompson's model
- Nuclear model: most positive charge and mass are concentrated in a small fraction of the whole atom
Scattering: α-particle + atomic nucleus

\[\frac{1}{r} = \frac{1}{b} \sin \phi + \frac{D}{2b^2} \left(\cos \phi - 1 \right) \]

\[D = 2 \frac{K q_\alpha q}{m_\alpha v^2} \]

\[K = \frac{1}{4\pi \varepsilon_0} \]

Hyperbola in polar coordinates

\[b : \text{impact parameter} \]

\[r \to \infty \Rightarrow \phi + \theta = \pi \]

\[0 = \frac{1}{b} \sin (\pi - \theta) + \frac{D}{2b^2} \left[\cos (\pi - \theta) - 1 \right] \]

\[0 = \frac{1}{b} \left(+ \sin \theta \right) + \frac{D}{2b^2} \left(- \cos \theta - 1 \right) \Rightarrow b = D \frac{\cos \theta + 1}{\sin \theta} \]
\[b = \frac{D}{2} \left(\frac{\cos^2\left(\frac{\theta}{2}\right) - \left[1 - \cos^2\left(\frac{\theta}{2}\right)\right] + 1}{2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)} \right) = \frac{D}{2} \cot\left(\frac{\theta}{2}\right) \]

\[b = \frac{D}{2} \cot\left(\frac{\theta}{2}\right) \]

An \(\alpha \)-particle inside the area \(2\pi b \) \(db \) will be scattered between the angles \(\theta \) and \(\theta + d\theta \)

\[\eta = \frac{\text{# of nucleus}}{\text{volume}} \implies \eta \times t = \frac{\text{# of nucleus}}{\text{area}} \]

\(t = \text{thickness of the foil} \)

\[\eta t \times 2\pi b \, db = P(b) \, db = p(\theta) \, d\theta \]

- probability that an \(\alpha \)-particle will be between \(b \) and \(b + db \) of a nucleus
- probability that an \(\alpha \)-particle will be scattered between \(\theta \) and \(\theta + d\theta \)
\[P(b) \, db = n \, t \, 2\pi \, b \, db \]

\[b = \frac{D}{z} \, \cos\left(\frac{\theta}{2}\right) \Rightarrow db = \frac{D}{z} \, \frac{(-\sin^2\frac{\theta}{2} - \cos^2\frac{\theta}{2})}{2 \, \sin^2\left(\frac{\theta}{2}\right)} \, d\theta = \frac{-D \, d\theta}{4 \, \sin^2\left(\frac{\theta}{2}\right)} \]

\[b \, db = \frac{D}{z} \, \frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \, \left(\frac{-D}{4}\right) \, \frac{d\theta}{\sin^2\left(\frac{\theta}{2}\right)} = -\frac{D^2}{8} \, \frac{\cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta}{2}\right)}{\sin^4\left(\frac{\theta}{2}\right)} \, d\theta \]

\[b \, db = -\frac{D^2}{16} \, \frac{\sin \theta \, d\theta}{\sin^4\left(\frac{\theta}{2}\right)} \]

\[P(b) \, db = -n \, t \, 2\pi \, D^2 \, \frac{\sin \theta \, d\theta}{16 \, \sin^4\left(\frac{\theta}{2}\right)} = -\pi \, n \, t \, \frac{D^2}{8} \, \sin \theta \, d\theta \]

\[\rho(\theta) \, d\theta = \frac{\pi \, n \, t \, D^2}{8 \, \sin^4\left(\frac{\theta}{2}\right)} \, \sin \theta \, d\theta \]

\[I_o = \frac{\text{# of x-particles}}{\text{area}} \Rightarrow \rho(\theta) = \frac{N(\theta)}{I_o} \]

\[\frac{N(\theta) \, d\theta}{I_o} = \frac{\pi \, n \, t \, D^2}{8 \, \sin^4\left(\frac{\theta}{2}\right)} \, \sin \theta \, d\theta \]
\[
\frac{N(\theta) \, d\theta}{I_0} = N(\Omega) \, d\Omega = \frac{\eta \, t \, D^2}{16 \, \sin^4 \left(\frac{\theta}{2} \right)} \, 2\pi \sin \theta \, d\theta
\]

\[
N(\Omega) = \frac{\eta \, t \, D^2}{16 \, \sin^4 \left(\frac{\theta}{2} \right)} = \frac{\eta \, t \, 4 \left(\frac{k \, q_x \, q}{m_x \, v_x} \right)^2}{16 \, \sin^4 \left(\frac{\theta}{2} \right)} = \frac{\eta \, t \left(\frac{k q_x \, q}{m_x \, v_x^2} \right)^2}{4 \, \sin^4 \left(\frac{\theta}{2} \right)}
\]

Rutherford's equation

\begin{align*}
N(\Omega) &= \frac{\eta \, t \left(\frac{k \, Z e^2}{2 \, E_k} \right)^2}{\sin^4 \left(\frac{\theta}{2} \right)} \\
\text{as } q_x &= 2e \\
m_x \, v_x^2 &= 2 \, E_k
\end{align*}

\[\text{Kinetic energy of } \alpha - \text{particle}\]

* \(N \propto \sin^9 \left(\frac{\theta}{2} \right)\) confirmed over 5 orders of magnitude \((10^5)\)

* Dependence \(N \propto t\) confirmed over a factor 10

* Confirmed with several kinetic energy from different radioactive sources

* Allowed determination of \(Z\) for several atoms
Closest approximation:

\[\frac{1}{r} = \frac{1}{b} \sin \phi + \frac{D}{2b^2} (\cos \phi - 1) \]

But, at closest approximation, \(r = r_d \), \(\theta + 2\phi = \pi \) \(\Rightarrow \phi = \frac{\pi}{2} - \frac{\theta}{2} \)

\[\frac{1}{r_d} = \frac{1}{b} \cos \left(\frac{\theta}{2} \right) + \frac{D}{2s^2} \left[\sin \left(\frac{\theta}{2} \right) - 1 \right] \]

\[a \quad b = \frac{D}{2} \cot \left(\frac{\theta}{2} \right) \Rightarrow \]

\[\frac{1}{r_d} = \frac{2}{D} \frac{\tan \left(\frac{\theta}{2} \right)}{\cos \left(\frac{\theta}{2} \right)} + \frac{D}{2s^2} \left[\frac{2}{D} \frac{\tan \left(\frac{\theta}{2} \right)}{s^2} \right]^2 \left[\sin \left(\frac{\theta}{2} \right) - 1 \right] \]

\[\frac{1}{r_d} = \frac{2}{D} \frac{\sin \left(\frac{\theta}{2} \right)}{\cos \left(\frac{\theta}{2} \right)} + \frac{2}{D} \frac{\sin^2 \left(\frac{\theta}{2} \right)}{1 - \sin^2 \left(\frac{\theta}{2} \right)} \] \[\left[\sin \left(\frac{\theta}{2} \right) - 1 \right] \]

\[\frac{1}{r_d} = \frac{2}{D} \left[\frac{\sin \left(\frac{\theta}{2} \right) \left[1 - \sin^2 \left(\frac{\theta}{2} \right) \right] + \sin^2 \left(\frac{\theta}{2} \right) \left[\sin \left(\frac{\theta}{2} \right) - 1 \right]}{1 - \sin^2 \left(\frac{\theta}{2} \right)} \right] \]
\[
\frac{1}{T_d} = \frac{2 \left[\sin\left(\frac{\Theta}{2}\right) - \sin^2\left(\frac{\Theta}{2}\right) \right]}{D \left[1 - \sin^3\left(\frac{\Theta}{2}\right) \right]} = \frac{2}{D} \sin\left(\frac{\Theta}{2}\right) \frac{1}{\left[1 - \sin\left(\frac{\Theta}{2}\right) \right] \left[1 + \sin\left(\frac{\Theta}{2}\right) \right]}
\]

\[
T_d = \frac{D}{2} \left[1 + \frac{1}{\sin\left(\frac{\Theta}{2}\right)} \right]
\]

"Head-on" collision: \(\theta = 0 \), then:

\[
\Theta = \pi \Rightarrow \sin\left(\frac{\Theta}{2}\right) = 1 \Rightarrow T_d = D
\]

\[
T_d = D = 2 \frac{K q_x q_e}{m_e v^2} \iff \frac{K q_x q_e}{D} = \frac{1}{2} m_e v^2
\]

At closest approximation of a "head-on" collision, all the initial kinetic energy is converted into (electric) potential energy.
Atomic Spectra:

* Atoms emit and absorb discrete wavelengths (frequencies) of light.

* Unlike blackbody radiation, which is continuous. For blackbody, $R(\lambda)$ is a continuous function of λ. Energy was indeed discretized, but all wavelengths (frequencies) are still present.

* A discrete set of spectral lines \leftrightarrow a particular atom

Experimental evidence:

* Balmer series: $\lambda_n = 364.6 \frac{n^2}{n^2 - 4}$ nm, $n=3,4,5,...$ (empirical law for hydrogen atom)

* Rydberg-Ritz formula: $\frac{1}{\lambda_{nm}} = R \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$ with $n>m$ (empirical law)

R: Rydberg constant

$R_H = 1.096776 \times 10^{7} \frac{1}{\text{m}}$
Electron in a circular orbit due to Coulomb force:

\[F = \frac{KZe^2}{r^2} = \frac{m v^2}{r} \]

\(r \)
Coulomb force
Centripetal force

\[E = \frac{1}{2} m v^2 + \left(-\frac{KZe^2}{r} \right) \]
Kinetic energy
Potential energy

but, from (1): \(m v^2 = \frac{KZe^2}{r} \)

\[E = \frac{1}{2} \frac{KZe^2}{r} - \frac{KZe^2}{r} = -\frac{1}{2} \frac{KZe^2}{r} \]

\[E = -\frac{KZe^2}{2r} \]

Classically (electromagnetic theory):

* the accelerated electron will emit electromagnetic radiation, which will take energy away.

* electron orbit will spiral towards the nucleus and collapse!!
Niels Bohr (1913): model of the hydrogen atom

Bohr’s postulates:

(1) An electron in an atom moves in a circular orbit about the nucleus under the influence of the Coulomb attraction between the electron and the nucleus, obeying the laws of classical mechanics.

(2) Instead of the infinite number of orbits which would be possible in classical mechanics, it is only possible for an electron to move in an orbit for which its orbital angular momentum, L, is an integral multiple of $\frac{\hbar}{2\pi}$ (Planck’s constant divided by 2π, $\hbar = \frac{h}{2\pi}$).

$$L = n \frac{\hbar}{2\pi}$$

(3) Despite the fact that it is constantly accelerating, an electron moving in such an allowed orbit does not radiate electromagnetic energy. Thus, its total energy E remains constant.

(4) Electromagnetic radiation is emitted if an electron, initially moving in an allowed orbit of total energy E_i, discontinuously changes its motion so that it moves to another allowed orbit of total energy E_f. The frequency of the emitted (absorbed) radiation is given by:

$$f = \frac{E_i - E_f}{\hbar}$$
From the Coulomb force for a circular motion and postulate (2):

\[\frac{KZe^2}{r^2} = \frac{mv^2}{r} \implies v^2 = \frac{KZe^2}{mr} \implies v = \left(\frac{KZe^2}{mr} \right)^{1/2} \]

\[L = mr^2v = mr^2 \left(\frac{KZe^2}{mr} \right)^{1/2} = \hbar \implies mr^2 \frac{KZe^2}{mr} = n^2 \hbar^2 \]

\[r = \frac{n^2 \hbar^2}{mKZe^2} \implies r_n = \frac{n^2 \hbar^2}{mKZe^2} = \frac{n^2 a_0}{Z} \quad \text{(discrete orbits)} \]

\[a_0 = \frac{\hbar^2}{mk^e} = 0.0529 \text{ nm} = 0.529 \text{ Å} = 0.529 \times 10^{-10} \text{ m} \quad \text{(Bohr radius)} \]

When \(Z = 1 \) (hydrogen), the smallest \(r_n \) occurs for \(n = 1 \)

\[r_1 = a_0 \]
Now, by applying the results above to the total energy:

\[E = - \frac{kZ^2e^2}{2r} = - \frac{kZ^2e^2}{2} \left(\frac{m k^2 e^2}{\hbar^2} \right) = - \left(\frac{m k^2 e^2}{2 \hbar^2} \right) \frac{1}{n^2} \implies \]

\[E_n = - \frac{Z^2 E_0}{n^2}, \quad \text{where} \quad E_0 = \frac{m k^2 e^2}{2 \hbar^2} = 13.6 \text{ eV} = 2.79 \times 10^{-18} \text{ J} \]

(Discrete energy levels)

<table>
<thead>
<tr>
<th>E(eV)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.85</td>
<td>4</td>
</tr>
<tr>
<td>-1.51</td>
<td>3</td>
</tr>
<tr>
<td>-2.39</td>
<td>2</td>
</tr>
</tbody>
</table>

Energy levels for \(Z = 1 \) (hydrogen atom)

\(-13.6\) \(n = 1 \) (lowest energy level)

Most stable
Those energies then determine the frequencies (wavelengths) of the emitted electromagnetic radiation according to postulate (9):

\[
E_i - E_f = \Delta E = -Z^2 E_0\left(\frac{1}{\eta_i^2} - \frac{1}{\eta_f^2}\right) = hf = \frac{hc}{\lambda}
\]

\[
\frac{1}{\lambda} = \frac{Z^2 E_0}{hc} \left(\frac{1}{\eta_f^2} - \frac{1}{\eta_i^2}\right)
\]

* reproduces Rydberg-Ritz empirical law

* derives Rydberg constant from fundamental constants:

\[
R = \frac{E_0}{hc} = \frac{mk^2e^4}{2\pi^2} \cdot \frac{1}{2\pi^2} = \frac{mk^2e^4}{4\pi^4c^3} \approx 1.097 \times 10^{-7} \text{ m}
\]

* predicted new spectra series that were unknown at that time

ppt 4.16 Hydrogen atom:

Balmer series: \(\eta_f = 2 \) \quad \text{already known at the time of Paschen series:} \ \eta_f = 3 \quad \text{Bohr's theory}

Hyman series \(\eta_f = 1 \)
Brackett \(\eta_f = 4 \) \quad \text{discovered after the predictions of}
Pfund \(\eta_f = 5 \) \quad \text{Bohr's theory}
\[\frac{1}{\lambda} = \frac{Z^2 E_0}{hc} \left(\frac{1}{\eta_f^2} - \frac{1}{\eta_i^2} \right) \]

\[Z = 2 \Rightarrow 2^2 = 4 \Rightarrow \frac{1}{\lambda_{\text{He}^+}} = \frac{4}{\lambda_{\text{H}}} \]

Absorption:

- Only photons with energy \(hf \) that matches a particular jump between two allowed energy levels can be absorbed by the atom.

\[E_f - E_i = h \nu \]

- As \(E_i \) is usually at the ground state (\(n = 1 \)), typically only the spectral lines associated with this series will be observed in absorption. Example, typically only the Lyman series is observed in the absorption spectra of \(\text{H} \).
Correction for finite nuclear mass:

* Although \(m \ll \frac{1}{M} \) for hydrogen, spectroscopic data are very precise and correction is needed.

\[
E_K = \frac{p^2}{2m} + \frac{p_{nucleus}^2}{2M}
\]

From conservation of momentum: \(p = p_{nucleus} \Rightarrow E_K = \frac{p^2}{2\mu}
\]

\[
E_K = \frac{p^2}{2} \left(\frac{1}{m} + \frac{1}{M} \right) \Rightarrow \frac{1}{\mu} = \frac{1}{m} + \frac{1}{M} \Rightarrow E_K = \frac{p^2}{2\mu}
\]

\[
m \Rightarrow \mu : \quad R = \frac{\mu E^4}{4\pi \hbar^3 c}
\]

(reduced mass)

\[
R = \frac{\frac{K^2 E^4}{\left(\frac{1}{m} + \frac{1}{M} \right) 4\pi \hbar^3 c} \times \frac{m}{M}}{\frac{(1 + \frac{m}{M})}{M}} = \frac{R_{\infty}}{m}
\]

\[
R_{\infty} \equiv \frac{m K^2 E^4}{4\pi \hbar^3 c} = 1.097 \times 10^7 \frac{1}{m}
\]

* After finite mass correction, the agreement between \(R \) and spectroscopic data is about 3: 100,000
X-Ray Spectra of Atoms:

* Moseley (1913): dependence of frequency on Z

\[\text{from Bohr's model: } E_n = -\left(\frac{m^2 \varepsilon^2 e^4}{2 \hbar^2} \right) \frac{1}{n^2} \]

\[\text{K-series: } n \to 1 \]

\[(Z-1) \text{ instead of } Z, \text{ due to partial shielding} \]

\[E_n - E_1 = h \nu = \frac{m k^2 (Z-1)^2 e^4}{2 \hbar^2} \left(1 - \frac{1}{n^2} \right) \]

\[\int = \frac{m k^2 e^4}{4 \pi \hbar^3} \left(\frac{(Z-1)^2}{n^2} \right) \left(1 - \frac{1}{n^2} \right), \quad n = 2 \quad (\alpha) \]

\[n = 3 \quad (\beta) \]

Frank and Hertz Experiment: (1914)

- direct (non-optical) verification of quantized energy levels

- discrete energy levels in more complex atoms (with multiple electrons)