Photons: particle-like properties of radiation

- PHOTOELECTRIC EFFECT

Experiments done by Heinrich Hertz (1887), Lenard (1900), Millikan (1914)

Theoretical explanation: Einstein (1905)

Photoelectric Simulation

a) **Same \(\lambda, \nu \), different light intensities**

\[\text{i}_{s,2} \quad \text{i}_{s,1} \]

\[\text{I}_s(\lambda) \]

\[\text{V} \]

- **When:** \(V \leq -V_o \) \(\Rightarrow \) no current
- \(V_o = \text{stopping potential} \)

\[eV_o = \frac{1}{2} m \nu_{max}^2 \]

- \(V_o \) is the same for any intensity of the light beam. **Why?**

b) **Different \(\lambda, \nu \), same light intensity**

\[\nu_2 > \nu_1 > \nu_t \]

\[V \]

- **When:** \(V < \nu_t \) \(\Rightarrow \) no current

- \(V_o \) depends on \(\nu \), **Why?**
Einstein Explanation (1905): Light is formed by discrete packets of energy, the energy of each packet is determined by the frequency ν.

\[h \nu = \text{quanta of light energy (photon)} \]

\[e V_0 = \frac{1}{2} m V_{\text{max}}^2 = h \nu - w_0 \]

\[\text{work} = \text{minimum energy lost in crossing the surface and getting into free space} \]

When: \[\frac{1}{2} m V_{\text{max}}^2 = 0 \Rightarrow h \nu = w_0 \]
COMPTON EXPERIMENT (1923):

Diagram of the Compton experiment setup:

- X-ray source
- Incident beam
- Scattered beam
- Scattering
- Lead collimating slits
- Crystal
- Detector

Graph showing intensity vs. wavelength (λ in Å) for scattering angles $\theta = 0^\circ$, 45°, 90°, and 135°.
From special relativity: \(E^2 = m^2 c^4 + p^2 c^2 \) (particles, \(\gamma \) photons)

photons: \(m = 0 \) \(\Rightarrow \ E^2 = p^2 c^2 \ \Rightarrow \ E = pc

before collision: \(|\vec{p}_i| = \frac{E_i}{c} = \frac{h \nu_i}{c} = \frac{h}{\lambda_i} \),

after collision: \(|\vec{p}_f| = \frac{E_f}{c} = \frac{h \nu_f}{c} = \frac{h}{\lambda_f} \)

electrons: \(m_e \) \(\Rightarrow \ E_{e}^2 = m_e^2 c^4 + p_e^2 c^4

before collision: \(E_{e,o} = m_e^2 c^4 + \frac{1}{2} m c^4 = m_e^2 c^4

after collision: \(E_{e,f} = m_e^2 c^4 + p_e^2 c^4

Conservation of momentum: \(\vec{p}_i = \vec{p}_z + \vec{p}_e \ \Rightarrow \ \vec{p}_e = \vec{p}_i - \vec{p}_z - 2 \vec{p}_i \frac{p_z}{p_z} \cos \theta \) (1)

Conservation of energy: \(E_i + E_{e,o} = E_f + E_{e,f} \) (2)
We can write (2) as:
\[\rho_1 c + m_e c^2 = \rho_2 c + (m_e c^2 + \rho_e c^2)^{1/2} \]

\[\left(\rho_1 - \rho_2 \right) c + m_e c^2 = m_e c^2 + \rho_e c^2 \]

\[p_e = -\frac{p_1^2 + p_2^2 - 2p_1p_2}{p_1^2 + (p_1 - p_2)^2} \]

Then:
\[\left(\rho_1 - \rho_2 \right) m_e c = p_1p_2 \left(1 - \cos \theta \right) \]

\[\left(\frac{1}{p_2} - \frac{1}{p_1} \right) m_e c = 1 - \cos \theta \]

\[\frac{\lambda_2 - \lambda_1}{\lambda_1} = \frac{1}{m_e c} \left(1 - \cos \theta \right) \Rightarrow \frac{\Delta \lambda}{\lambda_1} = \frac{h}{m_e c} \left(1 - \cos \theta \right) \]

Remarks:
* \(\frac{h}{m_e c} = \lambda_c = 0.00243 \text{ nm} \) (Compton wavelength)

* \(\lambda_2 - \lambda_1 = \Delta \lambda \) is independent of the wavelength

* Typically observed with x-rays and \(\gamma \) rays
Remarks:

* Light/matter interaction (absorption + emission) seems to require the particle nature of radiation (photon)

* Interference & diffraction strongly indicate the wave nature of radiation

* $E = h \nu \quad \text{and} \quad p = \frac{h}{\lambda}$

* Wave-particle duality of electromagnetic radiation