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High-power wavelength-tunable circular-grating surface-emitting
distributed Bragg deflector lasers
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We present a promising approach to achieve wavelength tuning in high-power circular-grating
surface-emitting lasers. A transparent electrode of indium tin aXid@) was used to inject carriers

into the second-order grating section of the device. Powers in excess of 225 mW and slope
efficiencies of better than 0.40 mW/mA are reported. A continuous tuning range of 0.5 nm was
achieved, while an overall wavelength shift of 1 nm was obtained for an ITO injection current of 30
mA. © 2000 American Institute of Physid$S0003-695(00)03511-7

Wavelength tunability is of great importance in optical gated by a number of groups for both optical and electrical
communication and spectroscopy applications. Circularearrier injection” Three main effects result from carrier in-
grating surface-emitting lasef€GSELS provide both high  jection: bandfilling, band-gap shrinkage and free-carrier ab-
output power and the added benefit of implementing arraysorption. For differing carrier concentrations and wave-
of such devices. The ability to dynamically control the wave-lengths of interest, a particular regime dominates. The

length of individual lasers is tremendously beneficial. magnitude and sign of the shift in effective index of refrac-
Over the past decade there has been considerable intergisin is correspondingly dependent on the given carrier effect.
in CGSELs. Beginning with the theoretical discussioasd A strained triple-quantum-well graded-index separate-

the demonstration of the first electrically pumped device inconfinement heterostructu(6RINSCH) structure was used
1992? CGSELs have improved in both performah@nd for these devices. The epitaxial layers were grown on an
functionality? In this letter, we report dynamic wavelength n* GaAs substrate using molecular-beam epitaxy. A 150 A
tuning of high-power circular-grating surface-emitting lasers.GaAs etch-stop layer was incorporated into the growth struc-
A concentric second-order circular grating provides bothture at a position 0.3:m above the quantum wells. The etch
feedback and surface outcoupling. An indium-tin—oxidestop served to accurately position the gratings for optimal
(ITO) annular region, covering the grating, was used as @&oupling. The Be-dopeg layer extended both above and
low-loss transparent electrode and enabled wavelength tumbelow the etch-stop layer. This doping structure prevented
ing without the need for epitaxial regrowth. recombination in the etch stop, provided a high doping level
Grating-based outcoupling allows enormous flexibility for the current injection through the ITO, and produced a
in device design. Surface outcoupling perpendicular to theow-threshold devic&.The Ti—Pt—Aup contacts, consisting
plane(first-order diffraction can be achieved with a second- of 100-um-diam circles, were created using a lift-off pro-
order grating. Additionally, this Configuration also SatiSﬁeSCess_ Contact mesas were defined by e|ectr0n_cyc|otron-
the Bragg condition for feedback. Thermally induced shiftscoupled reactive-ion etchingECR-RIB using a chlorine/
in lasing wavelength are well documente@he advantage methane mixture and were selectively etched down to the
of the procedure that we have adopted is that a localizediop layer with a hot BOE:HF solution. Second-order con-
thermal effect and a Carrier'injection effect are realizedcentric circular gratings were patterned in a ZEP-520 resist
Therefore, tuning of individual devices within an array is using a JEOL-6400 scanning electron microsc¢p&M)
possible. Thermal effects are realized through both the thelgquipped with nanometer pattern generation system. The
mal coefficient of the refractive inde@(T,\)=dn/d T, and gratings were then etched to a depth of about QuiRusing
the coefficient of thermal expansion(T). The change in  ECR-RIE. Ni—-Ge—Aun contacts were used. A 200-nm-thick
grating periodicity resulting from changes in temperature iSTQ film was deposited onto the sample using rf sputtering.
given in Eq.(1), whereA denotes the initial grating period, The |TO was subsequently patterned and etched in HCI to
produce annular regions of ITO. The first & of the grat-
AA(T)=a(T)*A*AT. 1) ing was bare of ITO in order to provide electrical isolation
between the ITO and thg-contact mesa. The devices were
then annealed at 415 °C using a rapid thermal process. Prior
] . o L VMR -'=  analysis of the electrical properties of ITO conducted by our
relative contribution of the shift in p_e_r|od|C|ty is not signifi- group revealed that a minimum serial resistance of approxi-
cant. As a consequence of the positive valugpincreases  maiely 1000 is achieved for annealing times and tempera-
in temperature cause an increase in the refractive index ang; o comparable to those used for theand p contacts.
therefore, a redshift of the emission wavelength. The Cha”g‘?herefore, a single annealing process was used. A SEM mi-
in effective index due to carrier injection has been inveSti'crograph of the grating/ITO cross section and a schematic of
the laser are shown in Fig. 1.
dElectronic mail: penner@optics.arizona.edu The lasers were tested at room temperature under pulsed

However, given that at room temperaturg8~3
X10 4°C™! and @~6.8x10 6°C™! for bulk GaAs® the
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FIG. 1. Cross section of circular-grating surface-emitting laser with ITO.

operation. A plot of the output power versus injection current
is given in Fig. 2. A threshold current of 28.5 m#reshold
current density of 363 A/cfy was confirmed using an opti-
cal spectrum analyzer. Linear regression of the data provides
a slope efficiency of 0.43 mW/mA, which corresponds to an
external differential quantum efficiency of 34%, which was
maintained over the whole operating current range. An out-
put power in excess of 220 mW was obtained. The charac-
terization of wavelength tuning was performed at 350 mA
(~121y), which corresponded to an output power of over
110 mW. The near- and far-field irradiance distributions are
shown in Fig. 3. The distributions are characteristic of the FIG. 3. Near- and far-field irradiance.
m=1 mode.

ITO injection was achieved with the probe contact nearpg mA. The trend lines for the two portions of the reverse-
the outer annulus of the gratingig. 1). Upon two-probe  pjas plot clearly suggest that the peak emission wavelength
testing of the ITO, there was little difference in contact re-pag jumped longitudinal modes as was observed on the spec-
sistance for probes located at different positions on the gragyym analyzer. As the far field did not change with ITO in-
ing. Direct current ITO injection currents up to 30 mA were jection, this confirms our suspicion that the change in mode
used. Considering the area of grating to be 0.12°mand  \yas not a transverse mode. The fact that both forward and
assuming uniform injection, this corresponds to ITO injec-reverse biasing results in a redshift in the wavelerigthsi-
tion current densities on the order of 25 Afcrfiorward- and  tive A\) suggests that localized thermal effects dominate.
reverse-biased ITO currents were investigated; however, thaowever, carrier injection does contribute to the change in
best results were obtained under reverse bias. Figure 4 showsiractive index, and therefore lasing wavelength, as evi-
the wavelength tuning that was achieved for a reversed-biagenced by the difference in the amount of wavelength tuning
injection. As shown in Fig. 4a 1 nmtuning range was for a given current under forward- or reverse-biased condi-
accomplished. The initial lasing wavelength was 982 nMy¢jons. Since the ITO is responsible for both thermal and car-
The plot is broken to indicate the mode hopping which oc-rier effects, optimization of its properties are important. Op-
curred as the ITO injection current was increased from 15 tgjca| absorption and electrical resistance must be minimized.

As a result, carrier effects should have a greater contribution
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FIG. 2. Output power vs injection current for high-power circular-grating

surface-emitting laser. FIG. 4. Wavelength shift vs ITO injection current.
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