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This article describes two mathematical formalisms for the determination of the second and fourth order
parameters of molecular films using optical spectroscopy. Method A uses polarized total internal reflection
fluorescence (TIRF) to calculate the second and fourth order parameters,〈P2(cosθ)〉 and〈P4(cosθ)〉, using
an independently determined value for the angle between the absorption and emission dipoles,γ. Method B
uses〈P2(cosθ)〉 obtained from attenuated total reflectance (ATR) data, along with polarized TIRF measurements
to calculate〈P4(cosθ)〉 and〈cos2 γ〉. The choice of a specific method should rely on experimental considerations.
We also present a method to separate the contributions of substrate surface roughness and dipole orientation
with respect to the molecular axis from the spectroscopically determined second and fourth order parameters.
Finally, a maximum entropy approach for construction of an orientation distribution from order parameters
is compared with the commonly used delta and Gaussian distributions.

1. Introduction

Molecular structure and orientation in organic thin films have
a profound impact on their biological, chemical, and physical
properties. Focusing on the determination of molecular
orientation in thin films, it is important to divide the goal
into two major tasks. The first task is to extract orientation
order parameters from experimental measurements of the
film. This task depends on the information content of the
experimental technique being employed (for example, if it is a
one-photon or two-photon process) and defines the geometric
information (order parameter) that a particular optical spectro-
scopic technique can provide. Typically, the information
obtained here is the ensemble average of a particular spherical
harmonic function (or an even Legendre polynomial term,
〈P2n(cosθ)〉, if the film is uniaxial). The second task is to use
these order parameters to construct an orientation distribution.
Order parameters are typically limited to a few discrete pieces
of information, and a model is necessary to construct an
orientation distribution that can potentially determine an infinite
number of order parameters. Both tasks above have been the
subject of much theoretical and experimental research over the
past 30 years.

In general, the second order parameter,〈P2(cosθ)〉, can be
determined by methods such as polarized IR, UV, or visible
absorption spectroscopies, which are techniques involving the
annihilation of one photon.1-7 Nonlinear optical techniques such
as sum frequency generation and second harmonic generation
have also been used to measure the third order parameter of
non-centrosymmetric assemblies, as described in the work of
Shen et al.8,9 Techniques based on two-photon processes such
as Raman scattering2,10-13 and fluorescence emission contain
information that can be related to the second and fourth order

parameters. Relevant to our work, we will focus in this
introduction on the determination of order parameters from
fluorescence emission.

Chapoy and DuPre`14,15 calculated order parameters from
polarized fluorescence measurements for a geometry where the
optical beam could be polarized for both the excitation and
emission processes along the major axis of symmetry (z-axis)
of an optically uniaxial film. However, the literature cited above
is insufficient for dealing with measurements in the total internal
reflection fluorescence (TIRF) geometry, as illustrated in Figure
1; in this case, the optical excitation along the axis of symmetry
(z-axis) using p-polarized excitation light also involves a
contribution along thex-axis and both Cartesian components
need to be considered for a proper calculation of order
parameters. Levine and co-workers have determined the second
and fourth order parameters for fluorescent probes in lipid
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Figure 1. Configuration for polarized TIRF experiments. Fluorescence
in the molecular film is excited by the optical field of an incoming
light beam incident in thex-z plane, which is polarized at either s or
p. Fluorescence is detected normal to the substrate, and a polarizer in
the detection path selects either s or p emission relative to the plane of
incidence (x-z plane). The molecular film with a refractive index of
nf is between the substrate and the superstrate, which has a refractive
index of nc.
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bilayers using an angle-resolved fluorescence depolarization
approach, which extends to both the steady state and time
resolved domains.7,16-23 LeGrange and co-workers used
polarized fluorescence to determine order parameters under
the simplifying assumptions that the absorption and
emission dipoles are collinear and along the molecular axis,24,25

but those assumptions are not applicable for all molecular
assemblies.

Polarized fluorescence in a TIRF geometry has been em-
ployed by several groups26-36 to recover molecular orientation
in thin-film assemblies. However, several limitations are present
in the literature. In some cases,32,35the absorption and emission
transition dipole moments are assumed to be collinear. In another
case,36 the polarization of the detected fluorescence was not
considered (theoretically and experimentally) and information
on both the second order parameter (from attenuated total
reflectance (ATR) data) and the angle between the absorption
and emission dipoles,γ, was required to produce orientation
information from TIRF data. In the work of Tronin et al.,33,34

the equations for calculating the polarized fluorescence intensi-
ties have mathematical errors that are discussed in this paper.
Kleijn and co-workers26-29 employed TIRF measurements to
obtain the second and fourth order parameters of porphyrin
molecules with circular symmetry under the assumption of
complete depolarization in the porphyrin plane of the emission
dipole relative to the absorption dipole,〈cos2 γ〉 ) 0.5. In later
works of Kleijn dealing with linear dipoles,30,31 〈cos2 γ〉 was
arbitrarily chosen with the purpose of placing the order
parameters inside the physical boundaries; however, this ap-
proach cannot uniquely determine〈cos2 γ〉 (as there is a range
of mathematically possible values) and lacks an experimental
justification. Our method B described below overcomes this
difficulty by combining polarized TIRF data with the second
order parameter from ATR measurements to allow for the
determination, in addition to the fourth order parameter, of an
experimental value of〈cos2 γ〉 in the physical/chemical environ-
ment of interest.

Once order parameters have been determined, several models
have been used in the literature to describe an orientation
distribution, such as delta distribution, Gaussian function,
expansion in Legendre polynomials, and maximum entropy
approach. The most common (and simplest) approach reported
in the literature is to measure one order parameter, such as the
absorption dichroic ratio, and use a delta function distribution
(sometimes also called a narrow distribution) to determine one
specific tilt angle for the whole population of molecules.37-42

The delta distribution, where all molecules have the same
geometrical configuration, is the most ordered distribution
among all possible solutions that satisfies the information
contained in one single order parameter. If different order
parameters are measured and the ensemble being studied is not
fully ordered, each order parameter will give a different tilt angle
under the delta distribution assumption, showing the inconsis-
tency and limitations of this model.

An approach employing two order parameters was used by
Saavedra and co-workers35,36to construct a Gaussian distribution
in an iterative procedure between ATR and TIRF measurements.
Other groups have also used the order parameters from
fluorescence and sum frequency generation to construct an
orientation distribution using the Gaussian distribution as a
model.33,34,43As will be discussed below, the Gaussian distribu-
tion with a priori shape is not capable of describing a large
fraction of the physical domain of all possible values for two
order parameters. Although the raw data in those reports remain

valid, the final distribution based on the Gaussian assumption
fails to converge for a large number of the experimental cases.
Details on inherent difficulties of the Gaussian distribution are
provided later in the Discussion section of this article. Besides
these difficulties, the Gaussian approach is limited to describing
situations where exactly two order parameters are available and
fails to provide any answer for situations where only one or
more than two order parameters are available.

Several works have described the orientation distribution
function as an expansion of orthogonal Legendre terms, where
each term is an experimentally determined order parameter.
Unlike the delta and Gaussian functions, the Legendre expansion
can accommodate any number of order parameters and can
describe the whole domain of possible values for the order
parameters. The more terms present in the expansion, the more
precisely the calculated distribution approaches the true distribu-
tion. If an infinite number of order parameters could be
experimentally determined, then the orientation distribution
would be described exactly. Chapoy and DuPre`14,15 have
described the orientation distribution of uniaxial liquid crystals
using a truncated Legendre expansion. They proposed using
experimental data to calculate order parameters that successively
add information about the distribution by increasing terms in
the Legendre expansion. Others have also used the Legendre
expansion to construct orientation distributions.24,25 One dis-
advantage to using the Legendre expansion to define an
orientation distribution is that it is not a positively defined
function. As a result, when only a few order parameters are
used (as is the case of nearly all works in this area44,45), the
probability density can have negative values,46,47which are not
physically meaningful. A typical approach in statistics and in
information theory is to use a maximum entropy technique to
determine the most random probability function that is consistent
with the information available.48,49 The maximum entropy
approach has been used by several researchers to determine an
orientation distribution based on measured order param-
eters;10,27,28,44,50in addition, this method can be applied for any
number of order parameters and always provides a positively
defined distribution.

In this paper, we describe how polarized measurements of
total internal reflection fluorescence (TIRF) are related to the
second and fourth order parameters and geometric information
on the angle between absorption and emission dipoles,
〈cos2 γ〉, as we consider the general situation where they can
be non-collinear. We also show how polarized attenuated
total reflectance (ATR), from which the second order param-
eter is determined, can be combined with TIRF data to
solve for the fourth order parameter and〈cos2 γ〉. Having
determined the second and fourth order parameters, we describe
a method to factor out surface roughness effects and the dipole
orientation with respect to the molecular axis in the calculation
of order parameters to allow for a clear identification of
molecular orientation. Finally, we apply the maximum entropy
method to the calculated order parameters to construct an
orientation distribution for a molecular film and compare its
results with commonly used delta and Gaussian distribu-
tions.

2. Theory

2.1. Polarized Fluorescence.By employing polarized light,
TIRF can be used to extract information on the orientation order
parameters of a thin film. As shown in Figure 1, an optical beam
polarized in either the s- or p-polarization is totally reflected at
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the substrate/film/superstrate interface and is used for excitation
of fluorescent species in the molecular film. A set of detection
optics collects the fluorescence signal that is emitted normal to
the sample surface. In the detection path, the optical beam passes
through a linear polarizer that filters the polarization of the
fluorescence either perpendicular or parallel to the plane of
incidence (thex-zplane), s- or p-polarization, respectively. The
combination of excitation and emission polarizations leads to
four different measurements of fluorescent intensities,Is,s, Is,p,
Ip,p, and Ip,s, where the first subscript refers to the excitation
polarization and the second subscript refers to the emission
polarization. The intensities of the fluorescence signal are given
by20,51

whereEBa is the electric field of the excitation beam,êe is a unit
vector in the direction of the detection polarizer,µb is the optical
absorption dipole, andνb is the fluorescence emission dipole.

To relate the TIRF signals to the optical transition dipoles,
we first consider a coordinate system (x′-y′-z′) where the
absorption dipole has the following components:

In this coordinate system, the emission dipole, which in the
general case can be non-collinear with the absorption dipole, is
described by the following components:

with a rotation matrix,R(γ), defining the orientation of the
emission dipole with respect to the absorption dipole:

where γ is the angle between the absorption and emission
dipoles (see Figure 2). The absorption and emission dipole
vectors can be fully described in the lab coordinate system (x-
y-z) through a set of Euler rotation matrices,R(φ,θ,R):

whereR, θ, andφ are defined as shown in Figure 2. By inserting
the vector components into eq 1 and assuming in-plane
symmetry (random inR andφ), we obtain

whereEx
2, Ey

2, andEz
2 are the electric field intensities in the

molecular film along thex, y, andzdirections. It is worth noting
a few points in eqs 8-11:

The results a-c above express the complete symmetry between
the in-planex andy components; in the Appendix, we derive
expressions analogous to eqs 8-11 for the case of a circular
absorber molecule and find identical symmetry.

(d) If the absorption and emission dipoles are collinear, then
〈cos2 γ〉 ) 1 and

(e) If the emission dipoles are completely depolarized
(randomized), for example, due to internal and/or Brownian
motions of the fluorophores, then〈cos2 γ〉 ) 1/3 and all four
polarized fluorescence intensities,Ia,e, will be completely
independent of〈cos4 θ〉; in addition,Is,s) Is,p andIp,p ) Ip,s. As

Is,s) 〈µy
2νy

2〉Ey
2 ) 1

16
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one would expect for complete depolarization, polarized fluorescence measurements do not add any extra orientation information
and we can only determine the second order parameter,〈P2(cosθ)〉, which is related to the polarized absorption process.

(f) From eqs 8 and 9, we can determine the fluorescence anisotropy,r, for an ordered system by

which for an isotropic molecular assembly, where〈cos2 θ〉 ) 1/3 and 〈cos4 θ〉 ) 1/5, reduces to the usual relation:

Returning to the general case expressed in eqs 8-11, we observe that eqs 10 and 11 can be simplified by noting that the electric
fields along thex andz directions are related to the magnetic fieldHy through the following equations:52

wherenf is the refractive index of the molecular film,nc is the refractive index of the medium above the film, andN is the effective
index of the propagating beam (also called Snell’s invariant), which is determined by the propagation angle of the incident beam
and was defined in previous papers.3,53

By combining eqs 8 and 9, we obtain

Similarly, by combining eqs 10 and 11, and using eqs 18 and 19, we obtain

As can be observed above, eqs 20 and 21 no longer depend onEx
2, Ey

2, andEz
2; thus, collecting four different fluorescence intensities

eliminates the need to determine the evanescent field intensities in the molecular film. Equations 20 and 21 relate three unknowns:
〈cos2 θ〉, 〈cos4 θ〉, and〈cos2 γ〉. Mathematically, two approaches are possible at this point: one option (method A) is to use a value
for 〈cos2 γ〉 (either assumed on the basis of some theoretical hypothesis or experimentally measured by another technique) and solve
eqs 20 and 21 for〈cos2 θ〉 and 〈cos4 θ〉 to get

Alternatively, a second option (method B) is to use an independently determined value for〈cos2 θ〉 (most likely measured experimentally
by another technique such as ATR2,3) and solve eqs 20 and 21 for〈cos4 θ〉 and 〈cos2 γ〉 to get
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The eqs derived above are for the case of a linear absorber; analogous equations for a circular absorber are derived in the Appendix
of this paper. In both cases, the second and fourth order parameters, which are defined as the mean value of the second,〈P2(cosθ)〉,
and fourth,〈P4(cosθ)〉, terms of the Legendre polynomials, can then be calculated from the values of〈cos2 θ〉 and 〈cos4 θ〉 by

2.2. Orientation Order Parameters.Thus far, we have described the orientation order parameters of the dipoles with respect to
the lab coordinate system through a set of Euler rotation matrices given in eq 5. Such an orientation can be the overall result of
several discrete factors.54,55 As shown in Figure 3, we consider below three possible factors:

(a) R(φ1,θ1,R1), which describes the orientation of the absorption and emission dipoles with respect to the molecular coordinate
system,

(b) R(φ2,θ2,R2), which describes the orientation of the molecular coordinate system with respect to the local coordinate system,
and

(c) R(φ3,θ3,R3), which describes the orientation of the local coordinate system (which may be different from the lab coordinate
system due to roughness features larger than the individual molecules in the film) with respect to the lab coordinate system. This
term describes the effects of surface roughness on the experimental results.

The contributions of all effects are translated into the experimental results,R(θ,φ,R), through the expression

and by assuming axial symmetry inφ1 andφ2, we get

for 2n ) 2, 4, 6, ... The result above is a consequence of the sum of spherical harmonics.56 For the specific case of 2n ) 2, the
expression reproduces the result already reported by others54 and later derived by Simpson and Rowlen using a different approach
to account for surface roughness effects on the second order parameter,〈P2(cosθ)〉.55 Here, we also extend the expression for any
even order parameter, as TIRF experimental results also contain information on〈P4(cosθ)〉. The experimentally determined order
parameters relating toθ (the angle between the absorption dipole and the lab surface normal) inherently include these factors, so it
is useful to be able to factor them out in order to recover the distribution of the molecule with respect to the local surface plane.

2.3. Orientation Distribution Based on the Maximum Entropy Method. All of the information on the order parameters obtained
above is determined directly from experimental measurements, and the calculations do not invoke any model for the molecular
orientation distribution. In this section, we will employ concepts of statistics to construct an orientation distribution function that
will describe the probability of having molecules tilted at every angle. We aim to do that when only a few pieces of information
(i.e., a few order parameters) have been experimentally determined. This scenario is a typical problem in statistics (and in information
theory) in which a maximum entropy approach is used to provide the most random probability function that is consistent with a
given set of information49 and can be applied to any amount of available information. According to the maximum entropy method,49

the probability distribution can be described by

wheregi(θ) (for i ) 1, ... , m) are the experimentally determined (or known) information about the system,λi are the associated
Lagrange multipliers,m is an integer defining the number of known order parameters, andµ is related to the normalization of the
probability function
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For the case where only the second order parameter is known,
m ) 1, we have

and the value of the Lagrange multiplier,λ2, is found by
imposing the experimental information available:

Expression 33 is a transcendental equation that requires a
numerical procedure to solve forλ2; several numerical ap-
proaches to treat this sort of problem are readily available in
codes such as Mathematica.57

For the case where the second and fourth order parameters
are known,m ) 2, we can write

with the values of the Lagrange multipliers,λ2 and λ4, found
by imposing the experimental constraints:

Again, eqs 36 and 37 require a numerical procedure to determine
the values of the Lagrange multipliers. We note here that an
alternative approach for eqs 34 and 35 would be to define them
in terms ofg1(θ) ) cos2 θ and g2(θ) ) cos4 θ, as they are
linearly independent functions, which means that they provide
nonredundant information. However, all Legendre terms are
orthogonal functions to each other, therefore linearly indepen-
dent, and provide a straightforward basis to expand as more
information becomes available.

For the sake of comparison, we describe a Gaussian distribu-
tion by

for 0 e θ e π/2, with the axial symmetry obtained by assuming
N(θ) ) N(π - θ) for π/2 e θ e π. As constantc in eq 38 is
determined by normalization of the probability function, the
other fitting parameters of the Gaussian distribution,a andb,
are found by numerically solving the following eqs imposed
by the experimental data:

3. Discussion

3.1. Choice of Method for Order Parameter Derivations.
Method A (eqs 22 and 23) can be used to determine the second
and fourth order parameters from polarized TIRF data. In this
case, 〈cos2 γ〉 must be assumed, or measured indepen-
dently.18,58,59In most of the literature on this topic, values for
〈cos2 γ〉 are determined for the molecule of interest in viscous
solutions to eliminate fluorescence depolarization from rotational
diffusion of the fluorophores.27,28,34,60Equations 24 and 25 show
how the fourth order parameter and〈cos2 γ〉 can be calculated
from the fluorescence data, provided that the second order
parameter is independently measured. Using this method, which
we call method B, a value of〈cos2 γ〉 does not need to be
assumed or measured independently. Since〈cos2 γ〉 can change
significantly depending on the environment of the fluoro-
phore,31,45,61,62it is useful to be able to calculate〈cos2 γ〉 directly
in the same environment (in this case, an immobilized film at
a solid/liquid interface) in which the order parameters are
measured.

3.2. Orientation Distribution with One Order Parameter.
If only one order parameter is measured experimentally, for

Figure 2. The absorption dipole is defined along thez′-axis for a linear
absorber.γ is the angle between the absorption,µb, and emission,νb,
dipoles. The relation between the molecular and laboratory axes is given
by the Euler matrices with rotations defined as follows:R is the angle
of rotation around thez-axis,θ is a rotation about they-axis and defines
the angle between the labz-axis and the molecularz′-axis, which is
parallel to the absorption dipole, and the angleø is a rotation around
the z-axis.

Figure 3. Cross section of the substrate showing the relationship
betweenθ1, θ2, andθ3 projected into thex-z plane.

∫0

π
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g1(θ) ) P2(cosθ) (32)
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example,〈P2(cosθ)〉 from polarized ATR absorbance measure-
ments, the orientation distribution can be determined from eqs
30-33. Table 1 shows the radial plots for the orientation
distribution determined for different values of〈P2(cosθ)〉 using
the maximum entropy method. For comparison, the correspond-
ing orientation distribution determined using a delta function
is also shown. As illustrated in Table 1, the delta function
describes the most ordered distribution that is consistent with
the experimental order parameter, while the maximum entropy
method creates the most random distribution of dipoles that also
satisfies the same order parameter. When〈P2(cosθ)〉 is close
to the extremes of-0.5 and 1, the dipoles are either parallel,
〈cos2 θ〉 ) 0, or perpendicular,〈cos2 θ〉 ) 1, to the substrate.
At the extreme values of〈P2(cosθ)〉, the plots in Table 1 indicate
that the distributions created using the two models converge to
the same profile and agree well. However, at intermediate values
of -0.5 < 〈P2(cos θ)〉 < 1, the two distributions show
significantly different profiles, although they both have the same
order parameter. Additional order parameters can be logically
incorporated into the maximum entropy function to define more
details of the distribution profile (as will be shown next).18,44,61

In comparison, the delta function is completely defined and fixed
with just one order parameter, and if the molecular system is
not fully ordered, any additional order parameter would show
the inconsistency of the delta distribution approach.

3.3. Orientation Distribution from Two Order Parameters.
We now consider a scenario where two order parameters are
known; in particular, we deal with the situation where〈P2(cos
θ)〉 and〈P4(cosθ)〉 are determined, although other combinations
of order parameters could be treated similarly.63 Figure 4 shows
the mathematical domain of physically meaningful values
for 〈P2(cos θ)〉 and 〈P4(cos θ)〉. As described in previous
works,11,16,27,64the two limiting curves of the physical domain
are defined by (a, upper curve)〈P4(cosθ)〉 ) 5/12〈P2(cosθ)〉 +
7/12 (which is a consequence of〈cos4 θ〉 e 〈cos2 θ〉) and (b,
lower curve)〈P4(cosθ)〉 ) 35/18〈P2(cosθ)〉2 - 5/9〈P2(cosθ)〉 -
7/18 (due to the Schwarz inequality〈cos4 θ〉 g 〈cos2 θ〉2). This
physical domain is established purely on the basis of mathemati-
cal arguments and is independent of any orientation distribution;
therefore, any valid experimental data, that is, a pair of values
given by{〈P2(cosθ)〉,〈P4(cosθ)〉}, must fall within this area.

Next, we examine the delta, Gaussian, and maximum entropy
approaches for describing an orientation distribution for possible
values of〈P2(cos θ)〉 and 〈P4(cos θ)〉. As a delta distribution
dictates that〈cos2 θ〉2 ) 〈cos4 θ〉, this distribution is only
consistent with points in the lower limiting curve (dashed line)
of Figure 4. Any other point in the two-dimensional physical
domain cannot be described by a delta distribution.

The maximum entropy and Gaussian distributions are com-
pared at several points{〈P2(cos θ)〉,〈P4(cos θ)〉} of the 2-D
domain shown in Figure 4.11,50,60,64-66 For each point, we have
used a Mathematica routine (root-find) to numerically solve for
the fitting parameters that are present in the maximum entropy
distribution in eqs 36 and 37 (Lagrange coefficientsλ2 andλ4)
and in the Gaussian distribution in eqs 39 and 40 (constantsa
and b). Once the fitting parameters were determined, the
distribution functions were used to recalculate the two order
parameters. For the maximum entropy method, the numerical
routine could always find a set ofλ2 and λ4 values that
simultaneously solved eqs 36 and 37, while, for the Gaussian
approach, the numerical approach had difficulty converging to
a solution fora andb to simultaneously satisfy eqs 39 and 40
at several points. To quantify the ability of each distribution to
describe a particular point of the 2-D domain, we define an

TABLE 1: One Order Parameter Fit with the Maximum
Entropy Distribution and the Delta, δ, Distribution a

a Polar plot representations are explained in one of the plots, where
the length of the dashed line is proportional to the probability density.

Figure 4. Graph of possible values of〈P2(cos θ)〉 and 〈P4(cos θ)〉.
Regions 1 and 2, above the solid line and below the dashed line,
respectively, are excluded because these combinations of〈P2(cosθ)〉
and〈P4(cosθ)〉 values are not possible. The dashed line indicates the
combinations that are well-defined by the delta distribution. The three
vertical lines (a, b, and c) show the values of〈P2(cosθ)〉 and〈P4(cos
θ)〉 that were used in the calculations shown in Figure 5.
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error function as the sum of the absolute difference between
the left-hand side (LHS) and the right-hand side (RHS) of eqs
36 and 37,|LHS - RHS|eq36 + |LHS - RHS|eq37, for the
maximum entropy approach; we apply an identical definition
but use the corresponding eqs 39 and 40 for the Gaussian
distribution. Figure 5 shows the error for the Gaussian and
maximum entropy fittings for three fixed values of〈P2(cosθ)〉
) 0, 0.25, and 0.625, in plots a, b, and c, respectively, with
values of〈P4(cosθ)〉 spanning across the whole possible range.
From these plots, we observe that the error is always numerically
very small for the maximum entropy approach (essentially
round-off error); however, for the Gaussian distribution, we can
clearly locate a transition between a region that is well fit and
a region that cannot be properly fit. For any value of〈P2(cos
θ)〉, when〈P4(cosθ)〉 is close to the lower limiting curve, the
fitting is acceptable; however, as〈P4(cosθ)〉 approaches roughly
the midway point of the allowable range for a fixed〈P2(cos
θ)〉, then the error sharply increases and the Gaussian distribution
is clearly a poor fit beyond that point. Therefore, the region of
the physical domain shown in Figure 4 that can be described
well with a Gaussian distribution is located near the lower
boundary of the whole domain.

Table 2 illustrates the orientation distributions calculated with
the maximum entropy method for different combinations of〈P2-
(cosθ)〉 and〈P4(cosθ)〉 that span the whole physical domain.
For those points in Figure 4 where the Gaussian distribution
also provides a good fit (a subregion of the whole physical
domain), Table 3 compares the shapes of the distributions
determined from the Gaussian and maximum entropy methods.
By comparing the orientation distributions in Table 3, we
observe that when the Gaussian distribution is successful in
achieving a good fit, the shape of its orientation distribution is
similar to the one produced by the maximum entropy method.

TABLE 3: Two Order Parameter Fit with the Maximum
Entropy Distribution and the Gaussian Distribution

Figure 5. Graphs showing the error for different values of〈P2(cos
θ)〉: (a) 〈P2(cosθ)〉 ) 0, (b) 〈P2(cosθ)〉 ) 0.25, and (c)〈P2(cosθ)〉 )
0.625 for the Gaussian distribution (squares connected by a dashed
line) and the maximum entropy method (diamonds connected by a solid
line).

TABLE 2: Two Order Parameter Fit with the Maximum
Entropy Distribution a

a Each column is a different〈P2(cosθ)〉 value (indicated in the first
row), and each box contains an orientation distribution created with
the 〈P4(cosθ)〉 value shown in the box. An asterisk signifies that the
fit for the Gaussian distribution is also acceptable.
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While the Gaussian distribution can describe more combina-
tions of order parameters than a delta function, which is strictly
confined to lower limiting curve, it still only covers a small
region of the full domain of the order parameters. In contrast,
the maximum entropy distribution can provide an orientation
distribution for every possible combination of order parameters.
Near the upper boundary of Figure 4, the a priori shape of the
Gaussian distribution cannot describe distributions that have
maxima at polar angles of 0 or 90°. The same is true for values
of 〈P2(cosθ)〉 and 〈P4(cosθ)〉 close to the isotropic values of
zero, where the orientation distribution does not have a well-
defined maximum, and the Gaussian also fails to provide a
reasonable fit.

4. Conclusions

We have described two methods for determining order
parameters for a molecular film using polarized fluorescence
techniques based on total internal reflection. In method A,
fluorescence data are used to determine〈P2(cos θ)〉 and 〈P4-
(cosθ)〉 by assuming (or independently measuring) a value for
〈cos2 γ〉. Method B uses the fluorescence data along with an
independently measured value of〈P2(cosθ)〉 to determine〈P4-
(cosθ)〉 and〈cos2 γ〉. The advantage in using the latter approach
is that〈cos2 γ〉 can be recovered with the chromophores located
in the physical/chemical environment of interest (e.g., confined
to a solid/liquid interface). Mathematical formalisms for deter-
mining the effects of substrate roughness on the even numbered
order parameters are also presented. From a pair of experimen-
tally determined order parameters, an orientation distribution
can be constructed using the maximum entropy method. We
compared the maximum entropy method with two other
orientation distribution models, the delta and Gaussian distribu-
tions, showing that the maximum entropy method is capable of
fitting the physical domain composed of all possible values of
〈P2(cos θ)〉 and 〈P4(cos θ)〉, unlike the other two distribu-
tions that have significant limitations in their applicability. In
the following paper, we apply the formalisms developed here
to study cytochromec protein films formed by different
techniques (direct adsorption out of solution and microcontact
printing) on both dielectric and electroactive substrates (glass
and ITO).
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Appendix: Fluorescence Intensity Expressions for the
Case of a Circular Absorber

In this appendix, we determine analogous equations for a
circular absorber,27,36with the equations numbered to correspond
with those already presented in this paper for the case of a linear
absorber. The case of a circular absorber has been reported by
Tronin et al.;33 however, there are errors67,68 in their auxiliary
eqs 12 and 13 that preclude their use for the derivation of
the order parameters. In the molecular coordinate system (x′-

y′-z′), the absorption dipole for a circular absorber can be
described as follows:

and the emission dipole:

with

where γ and â account for the in-plane and out-of-plane
depolarization, respectively. Neglecting the out-of-plane depo-
larization, we get

The expressions above agree with those from Tronin et al.33,34

after a couple of errors are fixed in their publication. In eqs 12
and 13 of the referenced article,33,34the numerical terms1/4 and
3/4 should be associated only with theu term and it should be
((1/4)u + q) instead of (1/4)(u + q) and ((3/4)u - q) instead of
(3/4)(u - q).

(µx′
µy′
µz′

) ) (µ/x2

µ/x2
0

) (A2)
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νy′
νz′

) ) R(â,γ)(ν/x2
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0
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-sin â 0 cosâ )(cosγ -sin γ 0

sin γ cosγ 0
0 0 1) (A4)
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