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Instructions and Information: 
 

l Attempt any 2 of the 6 questions  
l This is a closed book examination 
l Start each question on a new sheet of paper – use only one side of each sheet 
l Write your identification number on the upper right hand corner of each answer sheet 
l You may use a non programmable calculator 
l Partial credit will be awarded. 
l Correct answers without adequate explanations will not receive full credit.  
l Make sure your work is legible and clear 
l The points assigned to each part of each question is clearly indicated 



 

 

 
Nuclear & Particle Physics 

	
  
 
(a) List three basic properties an elementary particle must have to be classified as a baryon. (15) 

 
(b) The delta baryon resonances ( Δ++, Δ+, Δ0, Δ- ) are the four members of a mulitplet all of which decay to a 

nucleon and a pion.  What are the values of the isospin and strangeness of the Δ resonance ?  Justify your 
conclusions.       (15) 

 
(c) The width of the Δ is 115 MeV.  Estimate its lifetime.     (26) 
 
(d) Indicate, with reasons, which interaction (Strong, Weak or Electromagnetic) you would expect to be 

responsible for the following reactions: 
 
 (i) π + + n⇒ p+ n+ n +π 0       (11) 
 
 (ii) Ξ− ⇒ Λ0 +π −         (11) 
 
 (iii) Σ0 ⇒Λ0 +γ         (11) 
 
 (iv) e+ + e− ⇒ µ+ +µ−        (11) 
 
	
  
	
  
 
 
Some elementary particle properties 
 

 p n π - π0 Σ0 Ξ - e- µ −
 γ  Λ0 

(Q/e) Charge +1 0 -1 0 0 -1 -1 -1 0 0 

 Baryon # +1 +1 0 0 +1 +1 - - - +1 

 Lepton # - - - - - - +1 +1 - - 

 Strangeness 0 0 0 0 -1 -2 - - - -1 

Mass MeV/c2 938 940 140 135 1192 1321 0.51 106 0 1115 
 

Antiparticle properties can be found by multiplying by -1 
	
  
	
  
	
   	
  



 

 

Atmospheric Physics 
 
 

(a) Calculate the flux density (or irradiance) over a hemisphere for a flat surface emitting with an isotropic 
 intensity (i.e. I(θ, ϕ)=I).         (15) 
 
 
(b) If the surface in (a) is a blackbody, what is the intensity as a function of blackbody temperature? (10) 
 
 
(c) Assume that the earth is a spherical blackbody (radius RE) with an 
 effective temperature of TE. A spherical satellite with radius rsat , also an 
 ideal blackbody, is located an altitude, a, above the surface of the Earth.  
 Calculate the flux of radiation received by the satellite from a 
 differential solid angle of the Earth.  
 Hint: Use plane parallel assumption for the incoming radiation from a 
 differential solid angle.     (15) 
 
 
(d) Integrate over the appropriate solid angle to calculate the total incoming 
 radiation for the satellite from the Earth.   (15) 
 
 
(e) Expand the flux relation in (d) for small RE/(RE + a) and express the 
 result using the luminosity of the earth.  For small RE/(RE + a), what is 
 the physical interpretation?    (25) 
 
 
 
(f) Using the exact and approximate results from (d) and (e) for the incoming flux, calculate the radiative 
 equilibrium temperature of the satellite for a low earth orbit (a = 1700 km) and a geostationary orbit 
 (a = 32000km).  TE = 255K, RE = 6370       (20)



 

 

 
Optics 
 
 

The reflectivity of materials can be adjusted with coating layers. 
 

(a) Anti-reflection coatings reducing the reflectivity of a substrate are common in optical elements. 
Determine the reflectivity of 𝑛! = 1.52 glass coated with a 𝜆/4 thick layer of MnF (𝑛! = 1.35). 
Absorption and multiple reflections may be neglected.    (40) 

Hint: the amplitude of the electrical field reflected at 90o incidence at an interface between two  
materials with indices of refraction 𝑛!,!  is  𝐸!"#$ = 𝐸!"#

!!!!!
!!!!!

 . 
 

(b) What is the reflectivity in the limit when  𝑛! → 1?     (10) 

 
(c) What is the reflectivity in the limit when  𝑛! → 𝑛!?     (10) 

 
(d) At what value of   𝑛! is the reflectivity a minimum?     (10) 

 
(e) In the previous example the reflectivity of the surface was decreased by adding a film. Show how 

the reflectivity of a material can be increased by coating with a different type of 𝜆/4 layer. What 
should the index of refraction   𝑛!   of the film be relative to that of the substrate  𝑛!: larger or 
smaller?          (20)  

 
(f) A substrate coated with one type of layer on one side and another type on the other side can be 

made to reflect, and therefore to transmit, light differently depending on the direction of light 
propagation. Give a few examples.       (10) 

  



 

 

Atomic & Molecular Physics 
 
Optical Tweezers 
 
(a) Consider an atom of mass m that emits its energy E as  photon of (rest) frequency f0 such that E = 

hf0.  The photon is then measured in a laboratory to have a frequency f.  At what velocity and in 
what direction did the atom recoil?        (25) 

 
 
(b) If the atom is at rest in the laboratory before it emits the photon, what frequency f is observed in 

the laboratory for the emitted light?       (25) 
 
 
(c) In the limit of low velocity, use conservation of momentum to calculate what frequency is 

observed if the atom is moving away from the measuring instrument at speed v. How does this 
compare to the “Doppler shift”?       (25) 

 
 
(d) Instead of an atom, consider a small transparent sphere in a “Gaussian” laser beam.  That is, a 

beam of photons in which there are more photons at the center than than at edge with a Gaussian 
profile.  Explain why the sphere will feel a force directing it toward the axis of the laser beam. 
(Hint: The sphere acts like a lens,  focusing light that passes through it.)   (25) 

 



 

 

Astrophysics 
 

Temperature of a Planet 
 
The solar constant, the irradiance of the Earth with light from the Sun, has been measured by Earth 
satellites to be about 1.36 kilowatts per square meter above the atmosphere.  The Stefan-Boltzmann 
constant  𝜎 is 5.67 x 10-8 W m-2 K-4. 
 
Consider the Earth and its satellite the Moon, both at the same average distance from the Sun. For the 
following you do not need to know either the radius of the Earth or the Moon. 
 
 
(a) What would the temperature of the illuminated surface of the Moon be if it were a perfectly 

absorbing blackbody?  Assume that the Moon rotates so slowly the illuminated surface comes to 
thermal equilibrium before it goes into darkness again.    (25) 

 
 
(b) The Moon’s “albedo” averaged over the solar spectrum is about 0.11, that is, it reflects about 11% 

of the light that strikes it.  What would be the equilibrium temperature of the illuminated lunar 
surface taking into account that not all of the light is absorbed.    (25) 

 
 
(c) The Earth rotates rapidly by comparison, and its atmosphere redistributes the incident solar energy 

around the globe.  The average albedo of the Earth is higher than the Moon at about 0.3 .  What 
would you expect the average temperature of the Earth’s surface to be and how does this compare 
to the freezing point of water at atmospheric pressure? Explain your assumptions about how 
effectively the warm Earth can radiate into space.     (25) 

 
 
(d) Asphalt has an albedo of about  0.04.  Use this and your results for part c to comment on  why 

urban areas of Earth would have “heat islands”.     (25) 
 

 
 
	
  
 
  



 

 

Condensed Matter Physics 
 

 
This problem concerns the tight-binding energies of a crystal with the hexagonal Bravais lattice symmetry. 

The α-orbital tight-binding energy Eα

k( )  is given by Eα (


k ) = εα − Jα

0 − Jα
1

n
∑ (


Rn )e

−i

k ⋅

Rn , where α 

represents the atomic orbital,  αε  is the atomic orbital energy (e.g., sε , the  s-orbital energy, pε , the  p-

orbital energy, etc.), 0Jα , the on-site potential energy, Jα
1 (

Rs ) , the off-site potential energy, 


k , the 

reciprocal vector, and 

Rn , the nearest neighbor lattice vectors. For a given orbital α, αε and 0Jα are 

constants, and the tight-binding energies Eα

k( ) will depend on the symmetry of the crystal via the third 

term in the equation.  
 
(To answer this problem it is not critical that you understand exactly what is meant by the tight-binding 
energy of a crystal.  What you need to do in this problem is to know how to use it to study the crystal with 
the hexagonal lattice symmetry. The basic knowledge that you need is the hexagonal symmetry, the 
primitive lattice (or basis) vectors, the nearest neighbor lattice vectors, and the reciprocal lattice vectors.) 

 
 

(a) Fig. 1 (below) shows the hexagonal Bravais lattice. The solid circles represent points (or atoms) 
forming the Bravais lattice. Write down the primitive lattice vectors (

a1 , 
a2 , and 

a3 ) (i.e., the 

black-bold arrows shown in Fig. 1) in terms of the lattice constant a , c, and the unit vectors ( î , ĵ , 

and k̂ ) in Cartesian coordinates. Namely, you need to find the x-, y-, and z-components for each 

vector, and express it as 
ai = aixî + aiy ĵ + aizk̂) , i=1, 2, 3.    (20) 

 

(b) Find the primitive reciprocal lattice vectors (

b1 , 

b2 , and 


b3 ) for the hexagonal lattice. The primitive 

reciprocal lattice vectors (

b1 , 

b2 , and 


b3 ) are defined as  


b1 =

2π a2 ×
a3( )

a1 ⋅
a2 ×
a3( )

, 

b2 =

2π a3 ×
a1( )

a1 ⋅
a2 ×
a3( )

, 

and 

b3 =

2π a1 ×
a2( )

a1 ⋅
a2 ×
a3( )

. Namely, you need to substitute
a1 , 
a2 , and 

a3  obtained from (a) into these 

formulas for 

b1 , 

b2 , and 


b3 .        (20) 

 
(c) Find the coordinates of the 8 nearest neighbor lattice vectors 


Rn = (Rnx ,Rny ,Rnz )  , n=1, 2, …, 8, for 

the hexagonal lattices with respect to the origin (Fig. 1). Namely, you need to find the components of 
the vectors starting from the origin and ending on the nearest neighbor points in the hexagonal lattice. 
           (20) 

 

(d) Using the formula Eα

k( ) given in the first paragraph of the problem and the results from (c) to 

express the s-orbital (i.e., α=s) tight binding energy Es

k( ) of the hexagonal as a function of 


k . 

(Hint: Js
1(

Rn ) = Js

1 is independent of  

Rn  when the orbital has a spherical symmetry, like s-orbital, 

and αε and 0Jα  are constants)       (20) 



 

 

 

(e) Using the results from (d) to find the s-orbital tight binding energy Es

k( ) for the hexagonal in 

terms of αε , 0Jα  , and 1
sJ at Γ point (i.e., 


k = (0,0,0) ) and K point (i.e., 


k = π

a
(2
3
,1
3
,0) , 

respectively.          (20) 
 
 
 

 

             
                                           
  
Fig. 1  The hexagoanl Bravais lattice. The solid circles represent the points (or atoms) forming the lattice. 
The black-bold arrows are the primitive lattice vectors

a1 , 
a2 , and 

a3 . The thin black arrows denote the 
unit vectors of the Cartesian coordinates. The origin is located at the center of the hexagon. 
 

 
 
 
 
 
 
 
 
 


