University of Louisville College of Arts and Sciences

Department of Physics and Astronomy PhD Qualifying Examination (Part I)

Fall 2014

Paper B – Electromagnetism

Time allowed – 90 minutes

Instructions and Information:

- Answer both questions
- This is a closed book examination
- Start each question on a new sheet of paper use only one side of each sheet
- Write your identification number on the upper right hand corner of each answer sheet
- You may use a non programmable calculator
- Partial credit will be awarded.
- Correct answers without adequate explanations will not receive full credit.
- Make sure your work is legible and clear
- The points assigned to each part of each question is clearly indicated

E&M Basic

Two long, parallel, cylindrical wires, each of radius a, whose centers are a distance d (d> 2a) apart carry equal currents, I, in opposite directions.

- (a) Obtain an expression for the **B** field in the plane formed by the axes of each cylinder a distance y from one of the axes. (11)
- (b) Sketch the configuration described above, indicating the direction of the current in each wire and the direction of the **B** field at a point a distance y from one of the wires. (3)
- (c) Assuming that the wires are part of a circuit completed "at infinity", obtain an expression for the magnetic flux between a length ℓ of the wires. (16)
- (d) Determine the self inductance of a length ℓ of this circuit. (5)

E&M Intermediate

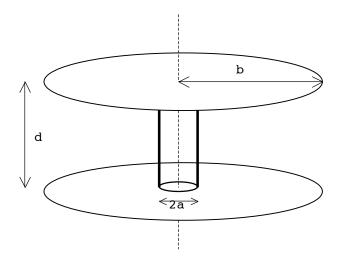
A region of space with volume V within a closed surface s contains electromagnetic fields (E, B) of energy density u and free current density J_f . Poynting's theorem, resulting from the application of the principle of conservation of energy to the volume V, can be written as follows,

$$\int_{V} \left(\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{S} + \mathbf{J_f} \cdot \mathbf{E} \right) d\tau = 0$$

where **S** is the Poynting vector.

(a) Explain the physical significance of each term in the above equation. (9)

A capacitor comprising two circular parallel plates of radius b and plate separation d << b is charged to a voltage V. A cylindrical conductor, length d, radius a and resistance R (a << d << b) is then connected between the two plates at their center to discharge the capacitor.



- (b) Derive an expression for the **B** field between the plates as a function of radius, $\rho > a$ and the current, I, flowing through the resistor at any given time. (21)
- (c) Explain qualitatively why the **B** field at the edge of the capacitor goes to zero. (8)
- (d) Use the Poynting vector to show that the instantaneous flow of energy into the resistor through its surface is I^2R where I is the current flowing through the resistor. (17)
- (e) The experiment is repeated with the resistor replaced by an ideal solenoid (having no resistance) also of radius a. Estimate the maximum $\bf B$ field which appears inside the solenoid when the separation between the plates d = 10 μ m, the voltage V = 1000 V and b/a = 100. (10)