University of Louisville College of Arts and Sciences

## Department of Physics and Astronomy PhD Qualifying Examination (Part I)

# Spring 2016

Paper A – Mechanics

Time allowed – 90 minutes

#### **Instructions and Information:**

- Answer both questions
- This is a closed book examination
- Start each question on a new sheet of paper use only one side of each sheet
- Write your identification number on the upper right hand corner of each answer sheet
- You may use a non programmable calculator
- Partial credit will be awarded.
- Correct answers without adequate explanations will not receive full credit.
- Make sure your work is legible and clear
- The points assigned to each part of each question is clearly indicated

### **Mechanics Basic**

| A 2 kg mass hanging from a spring extends the spring 20 cm from its unstretched length.<br>[ <b>Do not substitute a value for</b> $\pi$ <b>if it appears in your answers</b> ] |                                                                                                                                                                                 |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (a)                                                                                                                                                                            | Determine the spring constant, k. [ $g = 10 \text{ m/s}^2$ ]                                                                                                                    | (4)             |
| (b)                                                                                                                                                                            | This mass is removed and a 1 kg mass takes its place. The spring is stretched 10 cm from equilibrium position and released. Calculate the period of the resultant oscillations. | the new (4)     |
| (c)                                                                                                                                                                            | Evaluate the angular frequency of these oscillations.                                                                                                                           | (4)             |
| (d)                                                                                                                                                                            | Write down the general expression for position (relative to equilibrium position) as a func-<br>time.                                                                           | ction of<br>(4) |
| (e)                                                                                                                                                                            | Use the initial conditions described in (b) to determine the amplitude and phase constant oscillations.                                                                         | of the<br>(6)   |
| (f)                                                                                                                                                                            | How long does it take the mass to travel 5 cm from its equilibrium position ?                                                                                                   | (6)             |
| (g)                                                                                                                                                                            | Calculate the kinetic energy of the block when it is 5 cm from its equilibrium position.                                                                                        | (7)             |

#### **Mechanics Intermediate**

As shown in the figure below, two masses  $m_1$  and  $m_2$  are connected by a rigid rod of length d and of negligible mass. An extensionless string of length  $l_1$  is attached to  $m_1$  and connected to a fixed point of support P. Similarly, a string of length  $l_2$  connects  $m_2$  and P. Consider only the motion of the system in the plane of  $m_1$ ,  $m_2$  and P.

- (a) Using the angle  $\phi$  as the generalized coordinate, find the Lagrangian of the system. (20)
- (b) Find the Lagrange equation of motion. (20)
- (c) Calculate the frequency of small oscillations around the equilibrium position. (25)

