University of Louisville College of Arts and Sciences

Department of Physics and Astronomy PhD Qualifying Examination (Part I)

Spring 2016

Paper C – Thermal Physics

Time allowed – 90 minutes

Instructions and Information:

- Answer both questions
- This is a closed book examination
- Start each question on a new sheet of paper use only one side of each sheet
- Write your identification number on the upper right hand corner of each answer sheet
- You may use a non programmable calculator
- Partial credit will be awarded.
- Correct answers without adequate explanations will not receive full credit.
- Make sure your work is legible and clear
- The points assigned to each part of each question is clearly indicated

Thermal Physics Basic

One kg of water at a temperature of 5°C is placed inside an insulated container. $10°C = 2/3$

(a)	How much heat must be extracted to cool the water to $0 {}^{0}\text{C}$? [Specific heat of water = 4200 J/kg. ${}^{0}\text{C}$]	(4)
(b)	How much heat must be extracted to freeze all the water ? [Latent heat of fusion of water = $350 \times 10^3 \text{ J/kg}$]	(4)
(c)	How much heat must be extracted to cool the ice to $-28 \ ^{0}C$? [Specific heat of ice = 2000 J/kg.K]	(4)
A steel 1 -28 ⁰ C)	rod is now inserted into the container allowing heat to escape to the surroundings (kept at a rate of 196 Watts.	a constant
(d)	How many joules of heat has escaped after 1000 seconds ?	(4)
(e)	What is the temperature and composition (how much water and how much ice) of the container after 1000 seconds ?	ntents of (7)
(f)	Evaluate the entropy change of the surroundings after this time.	(5)

(g) Evaluate the entropy change of the water in this time. (7)

Thermal Physics Intermediate

Consider a classical one-dimensional system composed of N localized anharmonic oscillators. The potential energy of each oscillator is given by

 $V(x) = ax^2 + bx^4,$

where x is the position of the oscillator. Both parameters, a and b, are positive. Assume that b is very small in value and thus can be treated as an expansion parameter. To first order in b, and at a given temperature T,

(a)	Calculate the partition function of the system.	(25)
(b)	Calculate the heat capacity of the system.	(20)
(c)	Calculate the average values of x and x^2 .	(20)