NAME:

Exoplanet Detection Methods Phys & Astro 107, Univ. Louisville, revised 24 Oct 2024

Here are five major exoplanet detection methods. Assume that we know in each case the host star's distance and spectral type (meaning its star's mass, radius and temperature). For each method, here are:

i) the name

ii) briefly how it works

iii) whether it's distance-dependent or independent

iv) what we learn about the planet from each method given current technology

		Dist.	ONE Thing We
		Dep. or	Learn from
Name	How It Works	Indep.	this Method
radial velocity	Doppler shifts of star	indep.	direct: minimum mass
	from planet's gravity		indirect: temperature
transit	planet blocks star's light	indep.	direct: radius
	when it crosses in front of		indirect: temperature
	it $(=$ "transits")		
microlensing	planet bends starlight from	indep.	direct: mass
	a star FAR behind it (not		
	its own)		
direct imaging	we take a picture of the	depend.	direct: color
	planet beside its star		dir/indir: temperature
			indir: radius (if
			we estimate its albedo)
astrometric	planet's gravity pulls star	depend.	direct: mass
wobble	sideways (in plane of sky)		indirect: temperature

Note: If we combine two methods, for example radial velocity (which gives mass) and transit (which gives radius), then we can work out a planet's composition. If we know a planet's orbital period (say from the radial velocity, transit, direct imaging or astrometric wobble methods), then we can work out its temperature based on Kepler's 3rd Law and thus the distance to its host star.

To learn about any elements or molecules in a planet, we must take a spectrum of its star during a transit and work out what is in the planet's atmosphere, if it has one – a hard measurement, but possible to do. If we have a planet's color from direct imaging, that can give clues to its composition, too.