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19.5 Differential Galactic Rotation

Galactic bulge rotates like solid body
Sun orbits Galaxy - must be Keplerian, because Galactic mass concentrated in bulge
LSR (Local Standard of Rest), on small scale, reflects uniform motion of stars in Solar neigh-
borhood.
At SOME point, must see differential rotation

Recall that v ∝ r−1/2 for Keplerian motion
however, v = ωr ∝ r for solid body rotation

Derivation of Oort’s Constants for Differential Rotation
based on work in 1927 by Jan Oort (1900-1992).
Assume circular, co-planar orbits. Equation/figure numbers correspond to Ryden & Peterson
(2010).

See Fig. 19.15 and the figure I drew in pdf format, which has two triangles: one for position,
and one for velocity.

Assume stars orbit in concentric, coplanar circles. We note a star with quantities:
R0 = distance from Sun to Gal Ctr
R = distance from star to Gal Ctr
d = distance from Sun to star
Θ0 = Sun’s circular speed
Θ = star’s circular speed
ω0 = Θ0/R0 LSR angular velocity around Galaxy
ω = Θ/R star’s angular velocity around Galaxy
` = Gal longitude of star
α = angle from line of sight (Sun to star) to star’s velocity

There are also observables:
vr = star’s radial velocity, measured from Earth, corrected to a sun-centric or LSR reference
µ = star’s proper motion in arcsec/yr, measured from Earth, corrected to a sun-centric or LSR
reference

These parameters are usually extremely well: `, vr

These parameters are usually fairly well, depending on the sample we use to determine the LSR
and the center of the Galaxy: R0, Θ0 (and thus ω0)

These parameters are usually known somewhat, but generally less accurately the more distant
a star is: d, µ. The Hipparcos and GAIA satellites have revolutionized our knowledge of stellar
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distances and proper motions.

Reddening/extinction is a challenge, and µ can be immeasurably small on the span of a year,
thus we sometimes must use a baseline of several years to decades to measure µ.

These parameters are generally unknown: R, Θ, ω, α
We wish in the end to know ω(r) to understand Galactic rotation.

star’s radial velocity (from Sun) is Θ cosα
LSR velocity along line of sight to star is Θ0 sin `
So star’s radial velocity wrt LSR is vr = Θ cosα−Θ0 sin ` (Eqn 19.33)

Law of Sines gives:
sin `/R = [sin(90 + α)]/R0 = [cosα]/R0 (Eqn 19.34)
or
R0 sin ` = R cosα

Using ω0 = Θ0/R0, ω = Θ/R gives

vr = ωR cosα− ω0R0 sin `
= ωR0 sin `− ω0R0 sin `

This yields the first Oort Equation, for radial velocity:
= (ω − ω0)R0 sin ` (Eqn 19.37)

For rigid rotation, ω = ω0 and vr = 0
For differential rotation, ω 6= ω0 and vr 6= 0

To find vt:
calculate the difference between Sun’s star’s tangential velocity (from Sun) is Θ sinα
LSR velocity ⊥ line of sight to star in Gal plane is Θ0 cos `
So star’s tangential velocity wrt LSR is vt = Θ sinα−Θ0 cos ` (Eqn 19.38)

from Law of Sines:
sin `/R = [sin(90− `− α)]/d = [cos(`+ α)]/d

use cos(x+ y) = cos x cos y − sinx sin y to get

sin `/R = (cosα cos `− sinα sin `)/d

Solve for sinα:
sinα = [d/ sin `][(cosα cos `)/d− (sin `/R)]
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= (cosα cos `/ sin `)− (d/R)

Remember sin `/R = cosα/R0 − > cosα = (R0/R) sin `

Plugging above two, ω = Θ/R, ω0 = Θ0/R0 into Eqn 19.38 gives:

vt = Θ[(cosα cos `/ sin `)− (d sin `/R)]−Θ0 cos `
= Rω[(cosα cos `/ sin `)− (d/R)]−R0ω0 cos `
= Rω[(R0/R) sin ` cos `/ sin `− (d/R)]−R0ω0 cos `
= ωR0 cos `− ωdR0ω0 cos `

This yields the second Oort Equation, for tangential velocity:
= R0(ω − ω0) cos `− ωd (Eqn 19.42)

The OORT FORMULAE are Eqns 19.37, 19.42 for vr, vt

For Solar neighborhood, d� R and we can make some approximations

Using Taylor expansion, ω − ω0 ≈ (dω/dR)|R0(R−R0) (Eqn 19.43)

We define Oort ct A ≡ −(R0/2)(dω/dR)R0 (Eqn 19.48)

which makes vr = −2A(R−R0) sin `

For small d (meaning small 90◦− `−α), make d hypotenuse of triangle of angle ` and one side
≈ R−R0. Then
R−R0 ≈ d cos `
Use sin 2` = 2 sin ` cos ` to get
vr = −2A[d cos `] sin `
then
vr = Ad sin(2`) (Eqn 19.47)

For the tangential cpt vt (Eqn 19.42), using the same approximations
ω − ω0 ≈ (dω/dR)|R0(R−R0) ≈ (dω/dR)|R0(−d cos `)
and R−R0 ≈ d cos `
and ignoring terms d2 and higher
and using cos2 ` = (1/2)(1 + cos 2`), is
vt = R0(ω − ω0) cos `− dw
= R0

dω
dR
|R0(R−R0) cos `− dω

= R0
dω
dR
|R0(−d cos `)(cos `)− dω

= 2Ad(1/2)(1 + cos 2`)− dω
= d[A+ A cos 2`+ (ω0 − ω)− ω0]
= d[A+ A cos 2`+ dω

dR
|R0(−d cos `)− ω0]
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Let d2− > 0, then
vt = d[A+ A cos 2`− ω0]
Define B ≡ A− ω0 (Eqn 19.50) giving
vt = d(A cos(2`) +B) (Eqn 19.49)

WHEW!

If we plot vr(`) we see double sinusoid (period = 180◦ in `)

See Figs 19.16, 19.17

Stars with R < R0 pass us up/lap us.
Stars with R > R0 are passed up/lapped by us.
Since ` is measured from Gal Ctr, BOTH situations lead to higher `

19.6 Characterizing the Rotation Curve (at least near the LSR)

ω0 = Θ0/R0 = A−B (in Oort cts)

From observations:
Oort ct A = 14− 15 (km/s)·kpc, from B-stars, Cepheids (explain)
Oort ct B ≈ −10 −− − 12 (km/s)·kpc

So ω0 = Θ0/R0 = A−B = 25− 26 (km/s)·kpc

We can get AR0 from radio.
Latest results: ESO/VLT, tracing orbit of star S2 around BH in Gal. Ctr, using Kepler’s 3rd
Law, is R0 = 7.94± 0.42 kpc (Eisenhauer et al. 2003, ApJ)

Θ0 ≈ 220 km/s

What SHOULD Oort’s cts be?

Derive Oort’s Cts for LSR in Keplerian orbit about MGal = 1.5× 1011M�:

ω2R = GMg/R
2 (F=ma in circular orbit)

or
ω(R) = (GMG/R

3)1/2 (Eqn A)

dω/dR = −(1.5)(GMG)1/2R−5/2 = −3ω/2R

so A = −(R0/2)(dω/dR)R0

A = (−R0/2)(−3ω0/2R0)
A = (3/4)ω0
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Plug in values: ω0R0 ≈ 220 km/s
ω0 ≈ 220/7.94 = 27.7 km s−1 kpc−1

So A = (3/4)ω0 ≈ 21 km s−1 kpc−1

and
B ≡ A− ω0 = −(1/4)ω0

B = −6.9 km s−1 kpc−1

BUT we observe A = 14− 15 and B = −12−− − 10 in same units – WHY?
Galaxy is NOT a point mass!

Rotation Curve of Galaxy

Θ(R) is rotation curve of Galaxy

We can measure for other galaxies via HI emission, but for the Galaxy it’s harder. We can
measure rotation curves across several kpc of distance, interior to the solar circle (the region
inside the sun’s orbit) by looking at molecular or H I emission from clouds of gas along a line
of sight. The problem is that determining their distance and proper motion is very hard. So,
we use a statistical approach.

We note that the maximum vr occurs when line of sight touches tangent of a star’s orbit:
Rmin = R0 sin ` (related to Eqn 19.56)

Geometrically, we can invert Eqn A at the tangent point (Rmin) for the velocity:
Θ(Rmin) = vr,max + Θ0 sin `
then divide through by R = R0 sin ` and get the angular velocity
ω(Rmin) = ω0 + [vr,max/(R0 sin `)] (Ean 19.58)

where we observe vr,max and we can determine Rmin = R0 sin ` observationally, too.
NB: We need any two of R0, Θ0, ω0

If we use vr = −2A(R−R0) sin ` and assume d� R0 (nearby objects) then we get (after some
algebra)

vr,max = 2AR0(sin `)(1− sin `) so we get AR0

SO WE CAN WORK OUT ROTATION VELOCITY AS A FUNCTION OF RADIUS

We best observe it via radio/microwaves (HI/CO emission), because it probes to bigger dis-
tances than stars.
HI/CO traces spiral arms - so only a few places with v tangent to line of sight
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RESULTS: Rotation curve NOT Keplerian!
Rigid body rotation in Gal Bulge
Then rotation curve (v(R)) minimizes at 3kpc, then RISES SLOWLY
Rot’n curve RISES MORE beyond Sun!!
Thus there is lots of mat’l outside of Solar orbit - just as much as inside!

See Fig 19.19

For radii outside the solar circle, we need to use objects for which we can determine distance
e.g. Cepheid variables.
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