

But unlike a true core sample, the spectrum is encoded in wavelength, <u>not</u> depth, and the layers are mixed together.

Juite your la Luth par I. I. Bard. recuie 1 tier water 1711

• How we name the transitions

- Elements other than Hydrogen absorb light too
- And we need to distinguish between ions

• How we name the transitions

- Elements other than Hydrogen absorb light too
- And we need to distinguish between ions
- Convention:
 - Element Ion Wavelength
 - e.g., Fe II 1608, C IV 1548
 - Sometimes the wavelength is rounded up
 - Note, a * is often used to signify a transition that starts above the ground-state

• How we name the transitions

- Elements other than Hydrogen absorb light too
- And we need to distinguish between ions
- Convention:
 - Element Ion Wavelength
 - e.g., Fe II 1608, C IV 1548
 - Sometimes the wavelength is rounded up
 - Note, a * is often used to signify a transition that starts above the ground-state
- Quibbling aside
 - Ions and atoms should be referred to as C⁺, O⁰ not CII and OI

Identifying Transitions The Power of the Doublet

Identifying Transitions The Power of the Doublet

- Many metal-line transitions come in pairs (or more)
 - Pairs = doublets
 - More = multiplets (e.g. Fe II)
- Alkali doublets
 - C IV, Si IV, Mg II (and Lyα!)
 - Oscillator strengths -- 2:1 ratio
 - Gives a 2:1 ratio for the optical depths

Two sets of C IV Doublets 1.21.0 Normalized Flux 0.8 0.6 0.4 0.2 0.0 5580 5590 5600 5610 5640 5620 5630 Wavelength (Ang)

31

Identifying Transitions The Power of the Doublet

- Many metal-line transitions come in pairs (or more)
 - Pairs = doublets
 - More = multiplets (e.g. Fe II)
- Alkali doublets
 - C IV, Si IV, Mg II (and Lyα!)
 - Oscillator strengths -- 2:1 ratio
 - Gives a 2:1 ratio for the optical depths
- Velocity separation is unique
 - $\Delta \mathbf{v} = (\mathbf{c} \ \Delta \lambda) / \lambda$
 - Akin to a fingerprint
 - Unique, unambiguous identification
 - Especially combined with optical depth

Two sets of C IV Doublets

Equivalent Width

• Definition: W_{λ} or EW Normalized fraction of light that 1.0 has been absorbed Measured in Angstroms Normalized Flux o Formalism $W_\lambda = \int \left[1 - rac{I_ u}{I_ u^0} ight] \, d\lambda$ • True observable Value is independent of the 0.0 spectral resolution -100-50

But what is its physical meaning?

 $(\tau_0=1, b=10 \text{ km/s})$ Ly α line

Equivalent Width

• Definition: W_{λ} or EW

- Normalized fraction of light that has been absorbed
- Measured in Angstroms
- Formalism

$$W_{\lambda} = \int\limits_{0}^{\infty} \left[1 - rac{I_{
u}}{I_{
u}^{0}}
ight] d\lambda$$

- True observable
 - Value is independent of the spectral resolution
 - But what is its physical meaning?

$$(\tau_0=1, b=10 \text{ km/s})$$
 Ly α line

- Mapping of EW to N
 - For a single cloud
 - And a single b-value

• Mapping of EW to N

- For a single cloud
- And a single b-value
- Formalism

$$W_{\lambda} = \int_{0} \left[1 - \exp(- au_{\lambda})\right] d\lambda$$

 ∞

• $\tau_{\lambda} \sim N/b$

Mapping of EW to N

- For a single cloud
- And a single b-value

Formalism

$$W_{\lambda} = \int_{0} \left[1 - \exp(-\tau_{\lambda})\right] d\lambda$$

 $\tau_{\lambda} \sim N/b$

 ∞

- Three regions
 - Weak (linear) limit: W ~ N
 - $\bullet \tau_{\lambda} < 1 \quad (W_{\lambda} << 1 \text{ Ang})$

• Mapping of EW to N

- For a single cloud
- And a single b-value
- Formalism

$$W_{\lambda} = \int \left[1 - \exp(-\tau_{\lambda})\right] d\lambda$$

 ∞

0

• $\tau_{\lambda} \sim N/b$

- Three regions
 - Weak (linear) limit: W ~ N
 - $\tau_{\lambda} < 1$ (W_{λ} << 1Ang)
 - Strong limit: W ~ ln(N)

•
$$\tau_{\lambda} = 1$$
 to 10^4 (W _{λ} ~ 1 Ang)

• Mapping of EW to N

- For a single cloud
- And a single b-value

Formalism

$$W_{\lambda} = \int \left[1 - \exp(-\tau_{\lambda})\right] d$$

0

• $\tau_{\lambda} \sim N/b$

• Three regions

- Weak (linear) limit: W ~ N
 - $\tau_{\lambda} < 1$ (W_{λ} << 1Ang)
- Strong limit: W ~ ln(N)
 - $\tau_{\lambda} = 1$ to 10⁴ (W_{λ} ~ 1 Ang)
- Damped limit: W ~ N^{1/2}

 $\tau_{\lambda} > 10^5 \quad (W_{\lambda} >> 1 Ang)$

COG for Various Ions

7th Inning Stretch

Part II: GRB Science with Abs. Lines

Redshift **HI Surface Density** Molecules Metallicity **Chemical Abundances Progenitor environment Kinematics** IGM

Science: Redshift of the GRB (ZGRB)

• Establish the GRB energetics

- At least Eiso
- And critical for E_{peak}
- Connect the event to a galaxy
 - Including our own!
- Connect gas in the spectrum to the event
 - This enables the absorption line science...

Challenge: The Afterglow is a power-law

• Featureless

- No emission lines
- Breaks occur at uncertain and evolving frequencies
- No redshift information
 - Need absorption lines!

• IGM

- a.k.a., the "cosmic web"
- The gas that fills the space between galaxies
- The IGM is highly ionized

↑ n_{HI} / n_H ~ 10⁻⁵

- Lya forest
 - Absorption from the trace HI atoms in the IGM
 - Source of Lyα absorption (and Lyβ, Lyγ, Lyδ, ..)
 - Increasing opacity with z
- Metals in the IGM
 - Galaxies and the gas around them contain metals

- a.k.a., the "cosmic web"
- The gas that fills the space between galaxies
- The IGM is highly ionized
 n_{HI} / n_H ~ 10⁻⁵
- Lya forest
 - Absorption from the trace HI atoms in the IGM
 - Source of Lyα absorption (and Lyβ, Lyγ, Lyδ, ..)
 - Increasing opacity with z
- Metals in the IGM
 - Galaxies and the gas around them contain metals

- a.k.a., the "cosmic web"
- The gas that fills the space between galaxies
- The IGM is highly ionized
 n_{HI} / n_H ~ 10⁻⁵
- Lya forest
 - Absorption from the trace HI atoms in the IGM
 - Source of Lyα absorption (and Lyβ, Lyγ, Lyδ, ..)
 - Increasing opacity with z
- Metals in the IGM
 - Galaxies and the gas around them contain metals

- a.k.a., the "cosmic web"
- The gas that fills the space between galaxies
- The IGM is highly ionized
 n_{HI} / n_H ~ 10⁻⁵
- Lya forest
 - Absorption from the trace HI atoms in the IGM
 - Source of Lyα absorption (and Lyβ, Lyγ, Lyδ, ..)
 - Increasing opacity with z
- Metals in the IGM
 - Galaxies and the gas around them contain metals

- a.k.a., the "cosmic web"
- The gas that fills the space between galaxies
- The IGM is highly ionized
 n_{HI} / n_H ~ 10⁻⁵
- Lya forest
 - Absorption from the trace HI atoms in the IGM
 - Source of Lyα absorption (and Lyβ, Lyγ, Lyδ, ..)
 - Increasing opacity with z
- Metals in the IGM
 - Galaxies and the gas around them contain metals

z_{GRB} from the Ly α Forest

• 100% robust technique

- IGM exists in all directions
- Unmistakeable signature
- IGM is strong for higher z_{GRB}
 - Permits good photo z's from photometry
- Good precision
 - z_{GRB} known to a few 1000 km/s
 - Sufficient for most applications
- Only drawback
 - Requires z_{GRB} > 2
 - For spectra that covers to 4000Ang
 - Absence of IGM demands z_{GRB}<2</p>

Fynbo+ 09

ZGRB from IGM Metals

• 100% Robust technique

 z_{GRB} must equal or exceed z_{max} of the metals detected

Poor precision

- ZGRB can be much higher than zmax
 - Of course, absence of the Lyα forest will impose an upper limit
- Can (likely) confirm with follow-up galaxy spectrum

• Absence of metal-absorption

 Not a definitive constraint of any kind

41

ZGRB from Damped Lya Absorption (DLA)

- The majority of GRBs exhibit very strong, DLA
 - $N_{\rm HI} > 10^{21} \, {\rm cm}^{-2}$
 - This is a very rare event in the IGM
 - Strong damping wings
 - Easy to identify even in poor spectra

This occurs at the <u>end</u> of the observed Lyα forest

- Nearly 100% robust
- Precise to a few 100 km/s
- Also limited to z_{GRB} > 2

Fynbo+ 09

ZGRB from Strong Metal Absorption

- The majority of GRBs show metal lines with large EW
 - ▶ C IV, C II, Mg II, Si II ◆ EW > 1 Ang
 - Combine highest redshift with the strong line

Not 100% robust

- Many galaxies in the universe show strong metal absorption
- High precision (if correct)
 - Few tens of km/s

ZGRB from Fine-Structure Absorption

- The majority of GRBs show metal absorption from finestructure levels
 - ▶ e.g. FeII*, SiII*, OI*
 - These are produced by the afterglow
- 100% robust
 - Only GRBs show this
 Or gas very close to QSOs
- High precision
 - Few tens of km/s
- Challenge
 - Typically not very strong
 - i.e., requires higher quality data

Pro+ 06 Fynbo+ 09

ZGRB Distribution

Observations

- Afterglow spectroscopy dominates
- Host spectra contribute
- Upper limits
 - Constraints include absence of IGM
- Science?
 - Attempt to trace star-formation history
 - Many complicated selection criteria
 - GRB trigger, afterglow spectrum, etc.

Science: HI Column Density (NHI)

Surface density of the galaxy

- Mass distribution
- Characteristics of high z, starforming regions and ISM

Starting point for metallicity

Bulk of the gas

• f_{esc}

- Reionization of the universe
- See lecture by H-W Chen

N_{HI} Measurements

47

N_{HI} Measurements (DLAs)

- Characteristic of Giant
 Molecular Clouds and HI disks
- As expected for events occuring in SF regions

- Small subset with modest N_{HI}
 - Characteristic of a galactic 'halo'?
 - Key for reionization studies
- Two that are optically thin!
 - Non-zero escape fraction

- Characteristic of Giant
 Molecular Clouds and HI disks
- As expected for events occuring in SF regions

- Small subset with modest N_{HI}
 - Characteristic of a galactic 'halo'?
 - Key for reionization studies
- Two that are optically thin!
 - Non-zero escape fraction

- Characteristic of Giant
 Molecular Clouds and HI disks
- As expected for events occuring in SF regions

- Small subset with modest N_{HI}
 - Characteristic of a galactic 'halo'?
 - Key for reionization studies
- Two that are optically thin!
 - Non-zero escape fraction

- Characteristic of Giant
 Molecular Clouds and HI disks
- As expected for events occuring in SF regions

- Small subset with modest N_{HI}
 - Characteristic of a galactic 'halo'?
 - Key for reionization studies
- Two that are optically thin!
 - Non-zero escape fraction

- Characteristic of Giant Molecular Clouds and HI disks
- As expected for events occuring in SF regions

- Small subset with modest N_{HI}
 - Characteristic of a galactic 'halo'?
 - Key for reionization studies
- Two that are optically thin!
 - Non-zero escape fraction

 $[\]log N_{\rm HI}$

<u>Understanding the Difference</u>

• QSO-DLAs (green)

- Random sightlines through
 ~1000 high z galaxies
 - Cross-section selected
- None with $N_{HI} > 10^{22} \text{ cm}^{-2}$
- GRB-DLA (orange)
 - Systematically larger N_{HI}
 - Larger than most HI surface densities today
- Implications
 - Association with SF regions
 - But not H₂ clouds
 - Random sightlines from the center of a galaxy

Pro+05 Jakobsson+06 Pro+07

<u>Understanding the Difference</u>

• QSO-DLAs (green)

- Random sightlines through
 ~1000 high z galaxies
 - Cross-section selected
- None with $N_{HI} > 10^{22} \text{ cm}^{-2}$
- GRB-DLA (orange)
 - Systematically larger N_{HI}
 - Larger than most HI surface densities today
- Implications
 - Association with SF regions
 - But not H₂ clouds
 - Random sightlines from the center of a galaxy

Pro+05 Jakobsson+06 Pro+07

Searching for Molecules

Searching for Molecules

• HI: Lyman series

- 912 to 1025 Angstroms
- ~10 useful lines
- Mostly focus on Lyα

Searching for Molecules

HI: Lyman series

- 912 to 1025 Angstroms
- ► ~10 useful lines
- Mostly focus on Lyα

H2: Lyman-Werner bands 900-1100 Angstroms In principle, hundreds of lines • H₂: Lyman-Werner bands

Generally absent

- N(H₂) < 10^{16} cm⁻²
- Even when $N_{\rm HI} > 10^{21} \, \rm cm^{-2}$

Generally absent

- $N(H_2) < 10^{16} \text{ cm}^{-2}$
- Even when $N_{HI} > 10^{21} \text{ cm}^{-2}$
- There are a few exceptions
 - GRB 080607 (CO too!)
 - Highly extinguished+reddened

Generally absent

- ► N(H₂) < 10^{16} cm⁻²
- Even when $N_{HI} > 10^{21} \text{ cm}^{-2}$
- There are a few exceptions
 - GRB 080607 (CO too!)
 - Highly extinguished+reddened

Bimodal distribution

- Very dusty => high N(H₂)
 - Very difficult to observe
 - These likely dominate dark GRBs
- Low dust (and metallicity)
 - Majority of events
 - Where did the H₂ go?
 - Photoionized by the GRB progenitor Whalen+08

Science: Metallicity

- Key characteristic of the GRB host galaxy
 - Past/recent star-formation
- Clues to the progenitor
 - Can GRBs form from metal-rich, massive stars?
- Relative abundances
 - Dust content
 - Star-formation history

Metallicity Measurements

Definition

- Amount of metals per amount of gas
 - Typically done by number (not mass)

• Amount of gas

- Dominate by HI gas
- Well measured from Lyα (N_{HI})
- Forced to z>2
- Amount of metals
 - Need a column density for one or more elements
 - Avoid highly refractive elements (Fe)
 - Focus on ions that trace neutral gas
 - Low-ions
 - First ionization stage beyond 1 Ryd
 - Fe⁺, Si⁺, O⁰, Zn⁺, C⁺

Relative Velocity (km/s)

- Recall the Curve of Growth
 - No metal lines are strong enough to show damping wings
 - Weak limit
 - $W_{\lambda} \ll 1 A$
 - Low-dispersion spectrograph often has a detection limit exceeding 0.1 A

- Recall the Curve of Growth
 - No metal lines are strong enough to show damping wings
 - Weak limit
 - $W_{\lambda} \ll 1 A$
 - Low-dispersion spectrograph often has a detection limit exceeding 0.1 A
- Optimal approach
 - High dispersion, high S/N data
 - Focus on weak lines
 - Add up the optical depth
 - Or even just the equivalent width

- Recall the Curve of Growth
 - No metal lines are strong enough to show damping wings
 - Weak limit
 - $W_{\lambda} \ll 1 A$
 - Low-dispersion spectrograph often has a detection limit exceeding 0.1 A
- Optimal approach
 - High dispersion, high S/N data
 - Focus on weak lines
 - Add up the optical depth
 - Or even just the equivalent width
- Alternate approach
 - COG analysis
 - Model observed W_λ values
 - Assume a single `cloud'
 - Estimate N, but it is strictly a lower limit Pro 06

Metallicity: GRB Measurements

- Large dispersion
 - About a factor of 100
 - Unlikely to be metallicity gradients
 - Diverse set of host galaxies
- Median value
 - ► ~1/10 solar abundance

- Metal-poor
- No floor at 1/10 solar
 - Several cases with solar abundance
 - These are also highly reddened
- No obvious redshift evolution

 $[M/H] = \log(N_M) - \log(N_{HI}) - \log(M/H)_{Sun} \qquad ($

Metallicity: Comparison to Other Galaxies

DLAs toward QSOs

- i.e., HI-selected galaxies
 - Same techniques
 Pro+03
 - Mean = Metallicity of neutral gas
- GRBs vs. QSO-DLA
 - Same spread of [M/H]

GRBs show higher [M/H]

• LBGs

- Gas-phase measurements
 - 1/3 to 1/2 solar
- Brightest galaxies only

Pettini+01, Dessauges-Zavadsky+10

- Ansatz
 - GRBs trace *all* star-formation
 - Is the metallicity distribution consistent with this hypothesis?

- Ansatz
 - GRBs trace *all* star-formation
 - Is the metallicity distribution consistent with this hypothesis?
- UV Luminosity function $\phi(L_{UV}) \propto (L_{UV}/L_*)^{-1.6} \exp(-L_{UV}/L_*)$
 - Assume SFR ~ L_{UV}

Reddy+07

- Ansatz
 - GRBs trace *all* star-formation
 - Is the metallicity distribution consistent with this hypothesis?
- UV Luminosity function $\phi(L_{UV}) \propto (L_{UV}/L_*)^{-1.6} \exp(-L_{UV}/L_*)$
 - ► Assume SFR ~ L_{UV}
- Z/Luminosity Relation
 - Follow empirical relations $Z = Z_* (L/L_*)^{0.5}$
 - Normalize by LBG values
 - ★ Z(L*) = Z* = 1/2 solar (Pettini et al. 2001)

• Ansatz

- GRBs trace *all* star-formation
- Is the metallicity distribution consistent with this hypothesis?
- UV Luminosity function $\phi(L_{UV}) \propto (L_{UV}/L_*)^{-1.6} \exp(-L_{UV}/L_*)$
 - ► Assume SFR ~ L_{UV}
- Z/Luminosity Relation
 - Follow empirical relations $Z = Z_* (L/L_*)^{0.5}$
 - Normalize by LBG values
 - Z(L*) = Z* = 1/2 solar (Pettini et al. 2001)
- Result
 - Excellent agreement assuming GRBs trace z~3 SF galaxies
 - <u>Unobscured</u> GRB metallicities follow the unobscured SF in galaxies

Fynbo+08

Bright Galaxies are the Tip of the SF Iceberg

 $\phi(L_{UV}) \propto (L_{UV}/L_*)^{-1.6} \exp(-L_{UV}/L_*)$

Metallicity: Relative Abundances

- Examine the ratio of two elements
 - Plot vs. metallicity
 - Clues to dust and enrichment history
- Si/Fe (α /Fe)
 - Enhanced at all metallicity
 - Indicative of gas enriched by massive stars

• Ti/Fe

- Two refractive elements
- Ti/Fe under-abundance can only be explained by differential depletion

Distance: Where are these gas and metals? Large N_{HI} suggests SF region But, where are the molecules? Let's test this hypothesis Do the abundances reflect the progenitor environment?

Distance: Lower limit from Mg⁰

- Very large Mg⁰ column
 - Detected in several transitions
 - ▶ N(Mg⁰) = 10^{14.7} cm⁻²
- IP(Mg⁰) = 7.7 eV
 - Galaxies are optically thin at this energy
- At r=50pc, 99.99% of Mg⁰ is ionized in <1000s
 - Generic result for GRBs
 - Detection of Mg⁰ places the neutral gas at >50pc
 - Variations in N(Mg⁰)?
 - None found: r>80pc

Distance: Lower limit from Mg⁰

- Very large Mg⁰ column
 - Detected in several transitions
 - ▶ N(Mg⁰) = 10^{14.7} cm⁻²
- IP(Mg⁰) = 7.7 eV
 - Galaxies are optically thin at this energy
- At r=50pc, 99.99% of Mg⁰ is ionized in <1000s
 - Generic result for GRBs
 - Detection of Mg⁰ places the neutral gas at >50pc
 - Variations in N(Mg⁰)?
 - None found: r>80pc

Mirabal et al. (2003) Prochaska, Chen, & Bloom (2006)

Distance: Mg⁰ implies >100pc

- Strong Mg⁰ is generally detected
 - Majority of neutral gas lies at r > 100pc
 - How far away is it?
- Implications
 - SF region has been predominantly ionized
 - Not the GRB afterglow
 - Pre-existing HII region
 - Same as H₂ gas
 - ➡ Whalen et al. (2008)
 - Observations mainly constrain the properties of the neighboring ISM
 - Not the direct progenitor region

Distance: Fine-structure lines

Fine-Structure Excitation

• Indirect pumping

- UV transition to upper level
- Cascade down to excited state
- Electric-dipole forbidden
 - Multiple generations?
- Direct Pumping
 - IR transition from J=9/2
 - Magnetic-dipole transition
 - + J=9/2 to 7/2
 - + J=7/2 to 5/2, etc.
 - Possible, but unlikely
- Collisional excitation
 - Electrons should dominate
 - Key: Density and temperature

UV Pumping Dominates out to 1kpc

- UV dominates over collisions and IR pumping
 - The gas is not high density CSM
- Is collisional excitation viable?
 - Not really
 - Consider a high density clump
 - $n_{\rm H} \sim 10^5 \, {\rm cm}^{-3}$
 - r ~ N_{HI} / n_H ~ 10¹⁵ cm
 - But, d > 10²⁰ cm for collisions to dominate

Prochaska, Chen, & Bloom (2006)

Distance: Fine-structure lines

- Turn the problem around
 - Fine-structure detected
 - The gas arises within ~1kpc of the GRB
 - Fine-structure absent
 - The gas lies beyond ~1kpc from the GRB

Distances: Fine-structure lines

• Line variability

- t=0: No fine-structure lines
- Lines should appear
 - Timescale of <few min</p>
- Lines should decay
 t(Fe) ~ 1 hr
- Distance constraint from variability
 - Difficult calculation
 - But the observations provide key constraints
 - d = 100pc to several kpc
 - This gas is not within the SF region of the GRB
 - Currently, no signatures of the CSM (Chen+07)

Distances: Fine-structure lines

• Line variability

- t=0: No fine-structure lines
- Lines should appear
 - Timescale of <few min</p>
- Lines should decay
 t(Fe) ~ 1 hr
- Distance constraint from variability
 - Difficult calculation
 - But the observations provide key constraints
 - d = 100pc to several kpc
 - This gas is not within the SF region of the GRB
 - Currently, no signatures of the CSM (Chen+07)

Distances: Fine-structure lines

• Line variability

- t=0: No fine-structure lines
- Lines should appear
 - Timescale of <few min</p>
- Lines should decay
 t(Fe·) ~ 1 hr
- Distance constraint from variability
 - Difficult calculation
 - But the observations provide key constraints
 - d = 100pc to several kpc
 - This gas is not within the SF region of the GRB
 - Currently, no signatures of the CSM (Chen+07)

Vreeswijk+07

Distance: Implications

- Fact: GRB afterglows UV pump Fe, C, Si and O atoms/ ions out to several kpc
- Implications
 - Expect and observe variability
 - Observations probe the ambient ISM
- Distance diagnostic
 - Presence of fine-structure indicates r <~ 1kpc
 - Absence of fine-structure indicates r >> 1 kpc
 - Rules out putative CSM gas

POOR MAN'S ANIMATION

Pro+08 Fox+08

- Majority of the gas lies at beyond 100pc from the GRB
 - Metallicity need not reflect the GRB progenitor
 - But these galaxies are usually young

Pro+08 Fox+08

- Majority of the gas lies at beyond 100pc from the GRB
 - Metallicity need not reflect the GRB progenitor
 - But these galaxies are usually young
- GRB itself will photoionize gas to several tens of pc
 - Most of these ions need X-Ray spectroscopy (Xenia)
 - A few are possible with UV: NV

Pro+08 Fox+08

- Majority of the gas lies at beyond 100pc from the GRB
 - Metallicity need not reflect the GRB progenitor
 - But these galaxies are usually young
- GRB itself will photoionize gas to several tens of pc
 - Most of these ions need X-Ray spectroscopy (Xenia)
 - A few are possible with UV: NV
- Narrow N V is frequently observed
 - Possibly gas at ~10pc
 - Not the progenitor wind

Pro+08 Fox+08

Science: GRB and the IGM

- Repeat science that is traditionally done with QSOs
 - e.g. Lya forest, metal-lines
 - Take advantage of the simpler spectrum that GRBs offer
- Potentially much higher S/N
 - Brightest GRBs are *much*
 brighter than QSOs at z>3
 Albeit for a short amount of time
- Push to z>6
 - i.e. reionization
 - Formation of the first stars

• MgII

- Often establishes the GRB redshift (z<2.5)
 - EW>2A in most cases

• MgII

- Often establishes the GRB redshift (z<2.5)
 - EW>2A in most cases
- Intervening MgII
 - Easy to identify
 Even with low-res data
 - Limited to large EW systems in many cases

• MgII

- Often establishes the GRB redshift (z<2.5)
 - EW>2A in most cases
- Intervening MgII
 - Easy to identify
 - Even with low-res data
 - Limited to large EW systems in many cases
- GRB 970508
 - Even an example in the first optical spectrum

GRAASP Swift Sample

Prochter+06

GRB MgII Sample

 Table 1.
 Survey Data for Mg II Absorbers Along GRB Sightlines

GRB	z_{GRB}	z_{start}	z_{end}	z_{abs}	$W_r(2796 \text{ Å})$	$\Delta v \ ({\rm km \ s^{-1}} \)$	Reference
$W_r(2796) \ge 1 \text{ Å Mg II Statistical Sample}$							
000926	2.038	0.616	2.0				8
010222	1.477	0.430	1.460	0.927	1.00 ± 0.14	74,000	1
				1.156	2.49 ± 0.08	41,000	
011211	2.142	0.359	2.0				2
020405	0.695	0.359	0.684	0.472	1.1 ± 0.3	65,000	11
020813	1.255	0.359	1.240	1.224	1.67 ± 0.02	4,000	3
021004	2.328	0.359	2.0	1.380	1.81 ± 0.3	$97,\!000$	4
				1.602	1.53 ± 0.3	$72,\!000$	
030226	1.986	0.359	1.966				
030323	3.372	0.824	1.646				7
050505	4.275	1.414	2.0	1.695	1.98	176,000	6
050730	3.97	1.194	2.0				
050820	2.6147	0.359	1.850	0.692	2.877 ± 0.021	192,000	
				1.430	1.222 ± 0.036	113,000	
050908	3.35	0.814	2.0	1.548	1.336 ± 0.107	147,000	
051111	1.55	0.488	1.533	1.190	1.599 ± 0.007	45,000	
060418	1.49	0.359	1.473	0.603	1.251 ± 0.019	124,000	
				0.656	1.036 ± 0.012	116,000	
				1.107	1.876 ± 0.023	50,000	

MgII Search in QSO Spectra

MgII Search in QSO Spectra

MgII Search in QSO Spectra

• dN/dz

- Number of absorbers per unit redshift
- Roughly, 1 QSO has 1 unit of redshift coverage

• SDSS

- 20,000 quasars with sufficient SNR
 - Automatically identify 10,000 MgII systems
 - Stat sample is 7000 with Rest EW > 1A

Prochter+07

Comparing: Higher incidence to GRBs!

Other clues...

- C IV systems
 - More highly ionized gas
 - No enhancement observed
- Weak MgII systems
 - Also not enhanced
- More recent studies
 - Enhancement is still there
 - But not as strong as originally
 - Vergani+09

Tejos+07,09 Sudilovsky+07 Vergani+09

- Dust obscuration? No
 - MgII absorbers contain dust
 - Underestimate dN/dz
 - But, dust content is low
 - Effect is small

- Dust obscuration? No
 - MgII absorbers contain dust
 - Underestimate dN/dz
 - But, dust content is low
 - Effect is small
- Gas is Intrinsic to the GRB? No
 - ▶ v > 100,000 km/s !
 - MgI detections rules this out
 - Galaxies have been identified

- Dust obscuration? No
 - MgII absorbers contain dust
 - Underestimate dN/dz
 - But, dust content is low
 - Effect is small
- Gas is Intrinsic to the GRB? No
 - ▶ v > 100,000 km/s !
 - MgI detections rules this out
 - Galaxies have been identified
- Gravitational lensing? ??
 - One MgII per sightline
 - Double lens enhancement
 - But, flux counts are flat

- Dust obscuration? No
 - MgII absorbers contain dust
 - Underestimate dN/dz
 - But, dust content is low
 - Effect is small
- Gas is Intrinsic to the GRB? No
 - ▶ v > 100,000 km/s !
 - MgI detections rules this out
 - Galaxies have been identified
- Gravitational lensing? ??
 - One MgII per sightline
 - Double lens enhancement
 - But, flux counts are flat
- Beam size? Not likely
 - No partial covering observed
 - No difference in QSO emission lines

Spooky First Result from the IGM

Some Open Questions (that puzzle me):

- How do the absorption-line abundances compare to the emission lines?
- Why do X-Ray absorption measurements often show higher metal column densities?
- Is gray dust really required in some (many?) GRB sightlines?
- Is this spooky MgII enhancement real? If so how?
- What is the origin of the events with very low N_{HI}?
- Why is there such a larger dispersion of metallicities?
- Is there a way to probe the progenitor environment (<10pc)?
